D_s Hadronic Decays from CLEO-c

Peter Onyisi

CLEO Collaboration

DPF/JPS, 31 Oct 2006

Cornell University Laboratory for Elementary-Particle Physics

- Analysis techniques
- Results
 - Absolute D_s branching fractions
 - $D^0/D^+/D_s \rightarrow (\phi, \eta, \eta')X$

Other open-charm hadronic decays will be covered in the next talk by Steve Stroiney.

- Detector slightly modified from Υ physics configuration: silicon vertex detector replaced with (all stereo) drift chamber
- DAQ, trigger, software, etc. from CLEO-III with only minor changes
- Particle ID (from dE/dx, Čerenkov) better due to lower p tracks
- Tracking: $\delta p/p = 0.6\%$ at 1 GeV
- Csl calorimeter: $\delta E/E = 4\%$ at 100 MeV

 $D_{\rm s}$ analyses use \approx 200 pb⁻¹ of data taken near $E_{cm}=$ 4.17 GeV.

- ► $\sigma(D_s^*D_s) \sim 1 \text{ nb}$
- $\sigma(D_s D_s)$ too small to be useful
- $\sigma(DD + D^*D + D^*D^*) \sim 7 \text{ nb}$

Daughter requirements:

- Charged K, π distinguished using dE/dx (all momenta) and Čerenkov (for high momentum)
- ► Find π^0 and η candidates by combining pairs of isolated showers in the Csl calorimeter ($\sigma_{m_{\pi^0}} \sim 6$ MeV, $\sigma_{m_{\eta}} \sim 15$ MeV)
- Reconstruct $K_S \rightarrow \pi^+ \pi^-$ and $\eta' \rightarrow \pi^+ \pi^- \eta$
- $D_s^* D_s$ events kinematically separated from other open charm

We use

$$m_{BC}\equiv \sqrt{E_{
m beam}^2-|ec{p}_{
m cand}|^2}$$

as a proxy for momentum to choose the $D_s^* D_s$ two-body decay

- ► D_s candidates from $D_s^* \rightarrow (\gamma, \pi^0) D_s$ have smeared momenta and appear as a broad distribution in m_{BC} ; directly produced D_s candidates form a sharp peak
- We do *not* reconstruct the γ or π^0 .
- Fits are in invariant mass

Invariant mass

Peter Onvisi

D_s Hadronic Decays

3

Why absolute D_s branching fractions?

- Measurements of decays to c quarks depend on reconstructing $D_{(s)}$ decays
- Branching fraction measurements can be limiting systematics
 - ► Since $b \rightarrow c$ is a dominant decay mode, *B* measurements often rely on knowing various $D_{(s)}$ BFs
 - Affects precision measurements of $Z \rightarrow c\bar{c}, H \rightarrow c\bar{c}, \ldots$
- ▶ Reference modes $(D^0 \to K^- \pi^+, D^+ \to K^- \pi^+ \pi^+, D_s^+ \to \phi \pi^+)$ normalize virtually all other *D* branching fractions

- ► The classic reference decay has been the exclusive mode $D_s^+ \rightarrow \phi \pi^+ \rightarrow K^- K^+ \pi^+$
 - Essentially all other decays have branching ratios to this mode
- We instead measure the total K⁻K⁺π⁺ branching fraction.
 No φπ⁺ result will be presented in this talk.

Modes used

Decay	PDG 2006 BF (%)
$D_s^+ \rightarrow K_S K^+$	2.2 ± 0.45
$D^+_s ightarrow K^- K^+ \pi^+$	5.2 ± 0.9
$D^+_s ightarrow K^- K^+ \pi^+ \pi^0$	—
$D^+_s ightarrow \pi^+ \pi^+ \pi^-$	1.22 ± 0.23
$D^+_s\! ightarrow\pi^+\eta$	2.11 ± 0.35
$D^+_s ightarrow \pi^+ \eta^{\prime}$	4.7 ± 0.7

Relative uncertainties are 15–20%, and are all limited by the $\varphi\pi^+$ BF (13.6%).

Recent BaBar measurements: PRD **71**, 091104 (2005); PRD **74**, 031103(R) (2006)

- Uses both single tags (one D_s reconstructed) and double tags (both D_s reconstructed)
- Core idea: B = ratio of efficiency-corrected double tag and single tag yields
- We do a binned maximum likelihood fit for all the observed yields (utilizing Poisson statistics for double tags)
 - Simultaneous fit among all modes maximizes statistical power
 - Dominant statistical uncertainty on every branching fraction is $\approx \sqrt{N(\text{total double tags})}$, so every double tag mode helps every BF

Yield extraction

- Fit single tag signals with double Gaussian or Crystal Ball function (parameters fixed from Monte Carlo) plus a linear background
 - Each charge done separately
- In double tags, count events in signal and sideband boxes
 - Combinatoric background is flat in $m(D_s^+) m(D_s^-)$, has structure in $m(D_s^+) + m(D_s^-)$

Data Results: Single Tags

Data Results: Double Tags

Source	Fractional uncertainty (%)		
Tracking/ $K_S/\pi^0/\eta$	0.35/1.1/5.0/5.0 per particle		
Particle ID	0.3–1.4 correlated by decay		
Resonant substructure	0–6.0 correlated by decay		
Single Tag lineshapes	0.1–11.1 per mode		
Initial state radiation correction	1.0 for $\pi\pi\pi$, $KK\pi\pi^0$ ST		
Event environment	0–3.0 per mode		

э

Preliminary

Mode	Fit (%)	PDG 2006 fit (%)	
$\mathcal{B}(K_{S}K^{+})$	$1.50 \pm 0.09 \pm 0.05$	2.2 ± 0.45	
$\mathfrak{B}(\mathbf{K}^{-}\mathbf{K}^{+}\pi^{+})$	$5.57 \pm 0.30 \pm 0.19$	5.2 ± 0.9	
$\mathfrak{B}(K^-K^+\pi^+\pi^0)$	$5.62 \pm 0.33 \pm 0.51$	—	
$\mathfrak{B}(\pi^+\pi^+\pi^-)$	$1.12 \pm 0.08 \pm 0.05$	1.22 ± 0.23	
$\mathfrak{B}(\pi^+\eta)$	$1.47 \pm 0.12 \pm 0.14$	2.11 ± 0.35	
$\mathfrak{B}(\pi^+\eta')$	$4.02 \pm 0.27 \pm 0.30$	4.7 ± 0.7	

Peter Onvisi

D₅ Hadronic Decays

DPF/JPS, 31 Oct 2006

- The process (f₀(980) → K⁻K⁺)π⁺ will contribute to any φ mass region, with badly controlled parameters
- Correction depends on experiment's mass window, resolution, angular distribution requirements!
- We have clear evidence for scalar K⁻K⁺ production
- We produce partial K⁻K⁺π⁺ branching fractions for 10 and 20 MeV windows on each side of the φ mass – 14% difference...

- Inclusive D⁰/D⁺ branching fractions to mesons with large ss content extremely poorly known
- Cabibbo-favored D_s final states have more $s\bar{s}$ content, hence expect larger η , η' , ϕ branching fractions
- ▶ Inclusive rates help disentangle decay chains through open charm (\rightarrow e.g. understand B_s from $\Upsilon(5S)$)
- ▶ Uses 281 pb⁻¹ of 3.77 GeV data for D^0/D^+ and 200 pb⁻¹ of 4.17 GeV data for D_s

- Strategy: find D⁰/D⁺/D_s; reconstruct φ, η, η' with remaining showers and tracks
 - $\phi \rightarrow K^- K^+$
 - $\eta \rightarrow \gamma \gamma$
 - $\eta' \rightarrow \pi^+ \pi^- \eta \rightarrow \pi^+ \pi^- \gamma \gamma$
- Count number of tags with fits in invariant mass (D_s) or m_{BC} (D⁰, D⁺)
- ▶ Use sidebands in invariant mass (*D_s*) and

$$\Delta E \equiv E_{cand} - E_{beam}$$

 $\left(D^0/D^+\right)$ of the tag to get the background spectrum

 Fit invariant mass of φ and η, and η' – η mass difference

Example fits

Fits shown for D^0 , $D^+ \rightarrow \eta' X$

Fits for η , ϕ done in momentum bins to account for efficiency variation

	$\mathcal{B}(\phi X)$ (%)		$\mathcal{B}(\eta X)$ (%)		$\mathcal{B}(\eta' X)$ (%)	
	This result	´ PDG	This result	´PDG	This result	´ PDG
D^0	$1.05\pm0.08\pm0.07$	1.7 ± 0.8	$9.5\pm0.4\pm0.8$	< 13	$2.48\pm0.17\pm0.21$	
D^+	$1.03\pm0.10\pm0.07$	< 1.8	$6.3\pm0.5\pm0.5$	< 13	$1.04\pm0.16\pm0.09$	
Ds	$16.1 \pm 1.2 \pm 1.1$	$18 {}^{+15}_{-10}$	$23.5\pm3.1\pm2.0$		$8.7\pm1.9\pm1.1$	

• η signals include feeddown from η'

• All except $D^0/D_s \to \varphi X$ are first measurements

hep-ex/0610008, accepted by PRD

- ► Excellent detector, clean events, and large data sample ⇒ branching fractions for open charm decays with precision ≥ world averages
- D Hadronic branching fraction measurements help normalize D and B physics
- CLEO-c plans on taking ~ 1 fb⁻¹ of open charm data over the next two years, aims for absolute BF precision of 4% or better for D_s