Charm – Production Between 3.97 and 4.26 GeV and R Measurements

Brian Lang University of Minnesota on behalf of the CLEO Collaboration

Joint Meeting of Pacific Region Particle Physics Communities (DPF2006) October 29 - November 3, 2006 Honolulu, Hawaii

Outline

Introduction

Cross Sections between 3.97 and 4.26 GeV

- □ Multi-Body (MB) Production $(D^{(*)}D^{(*)}\pi)$
 - Momentum Spectrum Fits
- Exclusive $D_{(s)}^{(*)}D_{(s)}^{(*)}$ Cross Sections
- Consistency Checks
- Results and Radiative Corrections
- R between 6.9 and 10.6 GeV
- Conclusions

Introduction

Measure the production cross sections of DD,D*D, D*D*,D_sD_s,D_sD_s*,D_s*D_s* and the total charm cross section at 13 center-of-mass energies between 3.97 and 4.26

Data Sample

- Using the scan data which was collected between Aug. and Oct. of 2005.
- At each energy the data sample was sufficient to determine the cross sections for all expected charm states.

Multi-Body Production

PRELIMINARY

- There is no reason why, for example, there can not exist multi-body events like e⁺e⁻→DD^{*}π or any other allowed combination of Dmesons and pions.
- First, are there events outside our two-body D_(s)^(*)D_(s)^(*) exclusive event categories. Yes!

Assuming only two bodies are produced, we should have no D⁰ mesons with a momenta below ~350 MeV.

Data shows a clear D⁰ peak in the mass distribution for $K^-\pi^+$ candidates with momenta below 250 MeV.

Momentum Spectrum of D^0 at 4170 MeV

Brian Lang University of Minnesota and the CLEO Collaboration

Brian Lang University of Minnesota and the CLEO Collaboration

$$(P_{Event}^{\mu} - P_{D^{*}}^{\mu} - P_{\pi}^{\mu})^{2} = MM^{2}$$

Momentum Fits using MC

- How do we get a handle on the multi-body contribution?
- It is possible to estimate the contribution of multibody events by fitting the observed *D* momentum spectrum with MC predictions for the two-body processes and some representation of multi-body.

Momentum Fits using MC

E_{cm} = 4170 MeV ~ 180 pb⁻¹

Only assuming $D^*D\pi$ multi-body is present.

Brian Lang University of Minnesota and the CLEO Collaboration

Check of the Total Charm Cross Section

- One can perform an inclusive measurement as a cross check on the total charm cross section.
 - The invariant mass used to extract the yields.
 - □ Only using $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$ and the high yield mode of $D_s^+ \rightarrow K^+K^-\pi^+$.
- Also, one can count the number of hadronic events above the *uds* continuum background as an additional check to the total charm cross section.

Comparison: Exclusive from MomentumFits vs. InclusivePRELIMINARY

Radiative Corrections

In order to compare the observed cross sections to theory and previous experiments the cross sections need to be corrected for the effects of initial-state radiation.

PRELIMINARY

Using theoretical treatment of Kuraev and Fadin (Sov. J. Nucl. Phys. 41 466) and Crystal Ball R measurement

R measurements between 6.9 and 10.6 GeV

R measurements between 6.9 and 10.6 GeV

The following selection criteria has been used to suppress background.

|Zvertex|<0.06 m - beam-gas/wall. (z-component of event vertex) Evis/2Ebeam>0.5 - two-photon, beam-gas/wall (Visible energy of event) |PzMiss/Evis/2Ebeam|<0.3 - two-photon, QED. (z-component of missing momentum) CE/2Ebeam < 0.9 Bhabha events. (Calorimeter energy of events) Multiplicity > 3 - two-photon, QED. (# of charge tracks) Egamma/Ebeam < 0.8 - ISR events (The most energetic photon energy)

Distribution of the calorimeter energy over 2Ebeam (CE) when all other cuts have been applied.

PRELIMINARY

Results

 $R = \sigma_0(e^+e^- \to hadrons) / \sigma_0(e^+e^- \to \mu\mu)$

Energy Point	Luminosity	R
(GeV)	(pb⁻1)	
10.54	905.0	3.60 +/- 0.01 +/-0.08
10.33	150.0	3.49 +/- 0.01 +/-0.08
10.00	432.0	3.49 +/- 0.01 +/-0.07
9.43	181.0	3.49 +/- 0.01 +/-0.07
8.38	6.7	3.58 +/- 0.02 +/-0.06
7.38	8.5	3.55 +/- 0.02 +/-0.06
6.96	2.5	3.60 +/- 0.03 +/-0.06

 The R values are consistent from one energy point to the next

PRELIMINARY

- The statistical errors are small, the largest is ~1% at 6.96 GeV
- The systematic errors are at the 2% level (main source is event selection).

Conclusions

- Determined the E_{cm} that maximized the D_s yield.
- Measured all kinematically allowed exclusive Charm production cross sections at 13 center-ofmass energies in addition to the total charm cross section between 3.97 and 4.26 GeV.
- Measured R at 7 center-of-mass energies between 6.9 and 10.6 GeV.

$$\sigma_0(s) = \frac{\sigma_{obs}(s) - \sigma_{res}(s)}{\epsilon(0)\delta_{sv} + I_{hard}}$$

-

The effective soft and virtual part of observed cross section can be determined as

$$\begin{split} \sigma_{sv}(s) &= \epsilon(0)\sigma_0(s)\delta_{sv} \quad \text{with} \qquad \delta_{sv} = \delta_{vp} + \delta_0\\ \delta_{vp} &= \sum_l \frac{2\alpha}{\pi} \left(\frac{1}{3}ln\frac{s}{m_l^2} - \frac{5}{9}\right)(l = e, \mu, \tau, h, \ldots).\\ \delta_0 &= \frac{2\alpha}{\pi} \left(\frac{3}{4}ln\frac{s}{m_e^2} + \frac{\pi^2}{6} - 1\right) \end{split}$$

The hard photon contribution is actually an integral over all

$$I_{hard} = \int_0^{kmax} \epsilon(k) \left(\frac{\sigma_0^{cont}(s')}{\sigma_0(s)}\right) t \frac{1}{k^{1-t}} \left(1 - k + \frac{k^2}{2}\right) dk$$

Momentum Fits to Data

E_{cm} = 4170 MeV ~ 180 pb⁻¹

