Exclusive Semileptonic b→ulv Decays at CLEO:

With Determination of |Vub| and Scale of Singlet Form Factor

DPF 2006, Honolulu Hawaii. CLEO Collaboration Talk given by: Richard Gray

Outline:

- Theory behind decays
- Method (Neutrino Reconstruction).
- Results
- Summary

Getting At |V_{ub}|

The QCD Anomaly in η and η' The physical η , η' states: $\begin{pmatrix} |\eta \rangle \\ |\eta' \rangle \end{pmatrix} = \begin{pmatrix} \cos(\theta_8) & -\sin(\theta_8) \\ \sin(\theta_8) & \cos(\theta_8) \end{pmatrix} \begin{pmatrix} |\eta^8 \rangle \\ |\eta^0 \rangle \end{pmatrix}$ $\eta^8 = \frac{1}{\sqrt{6}}(\bar{u}u + \bar{d}d - 2\bar{s}s)$ $\eta^0 \equiv \frac{1}{\sqrt{3}}(\bar{u}u + \bar{d}d + \bar{s}s)$ singlet The "QCD Anomaly" Singlet: $tr[\tau^a] = 1$ Octet: $tr[\tau^a] = 0$ Gluon Couplins if $tr[\tau^a] \neq 0$ $\partial_\mu j^{\mu a 5} = -rac{g^2}{16\pi^2} ilde{G}^{\mu u c}G^d_{\mu u}tr[au^a]tr[t^ct^d]$ Probe with semileptonic: Form Factor From FKS Mixing: $\int_{\eta^{(\prime)}} F_{+}^{B^{+} \to \eta^{(\prime)}} = F_{+}^{B^{0} \to \pi^{-}} \frac{f_{\eta^{(\prime)}}^{q}}{\sqrt{2} f_{\pi}} + F_{+}^{B^{+} \to \eta^{0}} \frac{\sqrt{2} f_{\eta^{(\prime)}}^{q} + f_{\eta^{(\prime)}}^{s}}{\sqrt{3} f_{\pi}}$ B $Br(B \rightarrow \eta Iv)$ and $Br(B \rightarrow \eta Iv)$ in terms of Br($B \rightarrow \pi I \nu$) and parameter, F_s $ilde{F}_s = (\int |F^{B^+ o \eta^0}_+|^2 \Omega_{\eta'} \partial q^2) / (\int |F^{B^0 o \pi^-}_+|^2 \Omega_{\eta'} \partial q^2)$ 4

Measurements:

- •*Br*($B \rightarrow \pi I \nu$) in coarse q² bins
- •Br($B \rightarrow \rho I_V$) in coarse $q^2 \& \cos \theta_{wl}$ bins
- •Br($B \rightarrow \eta I_V$) all phase space
- •Br($B \rightarrow \eta' I_V$) all phase space

Improvements:

- 60% More Data with addition of CLEO3, now 15.4×10⁶ BBbar
- Vector modes binned in cosθ_{wl}
 (Previously Cut)
- Reduce Minimum P_{lepton} (1.5 to 1.0 GeV)
- Isolate Continuum with finer q² binning in q²<8GeV²
- Addition of η ' for QCD Singlet Study

Neutrino Reconstruction

- Works best at symmetric e⁺e⁻ collider.
 - $-|Q_{total}| = 0$
 - # leptons =1
- Neutrino (v) from Energy/Momentum conservation.
 - $E(v) = 2 \times E(beam) E(tracks) E(showers)$
 - P(v) = -P(tracks)-P(showers)
- Full B Meson Reconstruction: I (lepton), h(meson), v (neutrino).**Neutrino P Resolution** - E(B) = E(v) + E(I) + E(h)400**-**350 - P(B) = P(v) + P(I) + P(h)300 250 200 150 After all cuts, P **50**E <u>ما</u>_1.5 resolution aprox. 0.1 -0.5 0 0.5 6 P_v GeV/c GeV/c

The Fit

- Signal yield by fitting distribution in $\Delta E:M_B$ plane.
 - $\Delta E = E(beam) E(B)$
 - $M_B^2 = E^2(beam) P^2(B)$
- Use binned log-likelihood with Barlow-Beeston method.

•Simultaneous fit in all modes and bins.

- -Uses isospin constraints
- -Automatic unfolding and efficiency matrix

Fit Components

Fit Results

 M_{HIv} Distribution 0.15< $\Delta E{<}0.25$ $\pi^{+/-}, \pi^0$ ρ+/-, ρ⁰, ω η' η Events/7.5MeV/c² ,2/14 12.75 MeV/c 180 140 100 40 5.22 5.24 5.26 5.28 5.3 M_{hlv} GeV/c² ⁰5.18 5.2 5.22 5.24 5.26 5.28 5.3 M_{hlv} GeV/C² 05.18 5.2 5.22 5.24 5.26 5.28 5.3 M_{hlv} GeV/c² 05.18 5.2 5.22 5.24 5.26 5.28 5.3 M_{hlv} GeV/C² 05.18 5.2 ΔE Distribution 5.265< M_{HIv} < 5.28 $\pi^{+/-}, \pi^0$ ρ+/-, ρ⁰, ω η Events/100MeV/c² s>/100 MeV 0.2 0.4 -0.6 -0.4 -0.2 0 0.6 0.4 -0.6 -0.4 -0.2 0.2 -0.6 -0.4 -0.2 0.2 -0.6 -0.4 -0.2 $\Delta E \, \text{GeV}$ $\Delta E \, \text{GeV}$ $\Delta E \, \text{GeV}$ $\Delta E \, \text{GeV}$

Systematic Uncertainties

	Systematic Error [%]				
		$B^0 \to \pi^- \ell^+ \nu$	$B^0 \to \rho^- \ell^+ \nu$	$B^+ \to \eta \ell^+ \nu$	$B^+ \to \eta' \ell^+ \nu$
Systematic Uncertainty	Neutrino Reconstruction	5.9	8.9	23.4	19.3
	Continuum Suppression	1.1	1.5	1.5	0.8
	$B \to X_c \ell \nu$ Model	1.5	5.8	2.1	4.8
	Other $B \to X_u \ell \nu$	2.5	2.8	3.5	3.0
	Fake Leptons	1.7	1.1	1.1	3.7
	Lepton Identification	2.0	2.0	2.0	2.0
	π^0 Identification	0.1	1.4	0.2	0.1
	Number of $\Upsilon \to B\bar{B}$	3.6	3.6	3.6	3.6
	$ au_{B^+}/ au_{B^0}$	0.4	0.7	0.2	0.2
	f_{+-}/f_{00}	0.7	0.1	2.1	2.0
	Non-Resonant $\pi\pi$	0.6	2.3	2.1	2.1
	Final State Radiation	2.8	4.4	3.1	4.0
	Total Experiment	8.6	13.2	24.5	21.5
	$B \rightarrow \pi \ell \nu$ Form Factor	0.8	0.4	0.3	0.2
	$B \to \rho \ell \nu$ Form Factor	0.8	1.8	0.3	1.5
	Total Theory	1.1	1.8	0.4	1.5

Largest Source Of

Measured Branching Fractions

 $Br(B^0 \rightarrow \pi^+ l^- \nu)$ $Br(B^0 \rightarrow \rho^+ l^- \nu)$ $(1.37\pm0.15\pm0.12\pm0.01)\times10^{-4}$ $(2.93\pm0.37\pm0.39\pm0.04)\times10^{-4}$ 0.35 0.1 $10^{4}/GeV^{2}$ 20.3 0.25 0.25 0.2 $\cos\theta_{wl} > 0$ cosθ_{wl}<0 /10^{0.15⁰} Ball 04 HPQCD 04 ×₀.₀₅⊧ X 0.02 **Prediction** Prediction Ы m 15 20 15 10 $q^2 GeV^{25}$ $q^2 GeV^2$ Theory for no singlet: $Br(B^+ \rightarrow \eta I^+ \nu) \times 10^4 = 0.44 \pm 0.23 \pm 0.11 \pm 0.00;$ $Br(B \rightarrow \eta | v) \times 10^4 = 0.4$ < 1.01×10⁻⁴ 90% C.L. ► $Br(B \rightarrow \eta' lv) \times 10^4 = 0.2$ $\frac{Br(B \rightarrow \eta' l \nu)}{2.5}$ $Br(B^+ \rightarrow \eta' I^+ \nu) \times 10^4 = 2.66 \pm 0.80 \pm 0.57 \pm 0.04;$ $Br(B \rightarrow \eta l \nu)_{11}$ $p_{back fluct} = 0.00118 \sim "3\sigma"$ 90% C.L. "evidence for"

Extracting |V_{ub}|

•We use our measurement for $B \rightarrow \pi I v$ for $q^2 > 16 GeV^2$ •We use recent results from HPQCD (PRD 73, 074502, 2006).

CLEO (2006): $|V_{ub}| = (4.3 \pm 0.4 \pm 0.2 \pm 0.6_{-0.4}) \times 10^{-3}$ BABAR (2006): $|V_{ub}| = (4.1 \pm 0.2 \pm 0.2 \pm 0.6_{-0.4}) \times 10^{-3}$ BELLE (2006): $|V_{ub}| = (4.0 \pm 0.5 \pm 0.2 \pm 0.6_{-0.4}) \times 10^{-3}$

QCD Singlet Effect

- Model Independent: 90% C.L. on ratio $Br(B \rightarrow \eta' l_V)/Br(B \rightarrow \eta l_V) > 2.5$
 - If No singlet contribution we expect $Br(B \rightarrow \eta' l_V)/Br(B \rightarrow \eta l_V) \sim 0.5$
- Model dependent: Consider FKS Mixing Scheme + Benke & Neubert

– We fit CLEO data to find a value for:
$$ilde{F}_s$$

 $\tilde{F}_{s} = (\int |F_{+}^{B^{+} \to \eta^{0}}|^{2} \Omega_{\eta'} \partial q^{2}) / (\int |F_{+}^{B^{0} \to \pi^{-}}|^{2} \Omega_{\eta'} \partial q^{2})$ Theory uncertainty includes FKS mixing parameters, and form factor shape uncertainties.

BABAR +
CLEO DATA:
$$\tilde{F}_s$$
 = 0.48 ±0.21_{stat}±0.20_{exp}±0.08_{theory}
Preliminary Results BABAR July 2006: Agree at 5% level
Br (B→ηlv) < 1.4 × 10⁻⁴ 90% C.L.
Br (B→η'lv) < 1.3 × 10⁻⁴ 90% C.L.

Summary:

- Measured Branching fractions for π , ρ , η ' and upper limit for η using neutrino reconstruction.
 - − Br(B→ π lv)= (1.37 ± 0.15±0.12 ±0.01)×10⁻⁴
 - − Br(B→ρlν)= (2.93 ± 0.37 ± 0.39± 0.04) × 10⁻⁴
 - − Br(B→ η' lv)= (2.66 ± 0.80 ± 0.57 ± 0.04) × 10⁻⁴ "evidence for"
 - Br(B→ηlv) < 1.01 × 10⁻⁴ 90% C.L.
- Extracted |Vub| using π q²>16GeV² and HPQCD prediction.
 - |Vub| = (4.3 ±0.4±0.2 +0.6 -0.4) × 10⁻³
- 90% Lower Limit on $Br(B \rightarrow \eta' Iv) / Br(B \rightarrow \eta Iv) > 2.5$ imply singlet contribution.