Study of dynamics of $\pi\pi$ transitions among $\Upsilon(3S)$, $\Upsilon(2S)$ and $\Upsilon(1S)$ in CLEO

Tomasz Skwarnicki Syracuse University Upsilon dipion transition in CLEO DPF'06 Honolulu T. Skwarnicki 2

Dalitz variables

• Three body decay: $\Upsilon \to \Upsilon \pi \pi$. If no coupling of $\pi \pi$ system to Υ 's polarizations then only 2 degrees of freedom.

Matrix element

- Heavy (b<u>b</u>) and light (ππ) degrees of freedom should approximately factorize
- Furthermore, since pions emitted in these transitions are soft, general structure of the matrix element can be constrained from chiral symmetry (PCAC) [Brown, Cahn PRL, 35, 1 (75)] in non-relativistic limit:

$$M = \mathbf{A}(\mathbf{e'} \cdot \mathbf{e})(q^2 - 2m_p^2) + \mathbf{B}(\mathbf{e'} \cdot \mathbf{e})E_1E_2 + \mathbf{C}[(\mathbf{e'} \cdot q_1)(\mathbf{e} \cdot q_2) + (\mathbf{e'} \cdot q_2)(\mathbf{e} \cdot q_1)]$$

e', e – Polarization vectors of parent and daughter Υ states

 q_1,q_2 – Four-vectors of pions, E_1,E_2 – their energies in parent Y rest frame

 $q^2 = (q_1 + q_2)^2 \equiv M_{pp}^2$ Lorentz invariant form:

$$E_1 E_2 \sim \left[(P' \cdot q_1)(P \cdot q_2) + (P' \cdot q_2)(P \cdot q_1) \right]$$

P', P – Four-vectors of parent and daughter Υ

No $\cos\theta_{\chi}$ dependence!

 $2q_1 \cdot q_2$

Depends on both q^2 and $cos\theta_X$

Couples pions to Y's polarizations

 Form factors A,B,C expected to be approximately constant (and real in the strict chiral limit)

Initial Theory

 $M = \mathbf{A}(\mathbf{e'} \cdot \mathbf{e})(q^2 - 2m_p^2) + \mathbf{B}(\mathbf{e'} \cdot \mathbf{e})E_1E_2 + \mathbf{C}[(\mathbf{e'} \cdot q_1)(\mathbf{e} \cdot q_2) + (\mathbf{e'} \cdot q_2)(\mathbf{e} \cdot q_1)]$

- In Multipole Expansion model, the 3rd term involves magnetic interactions (spin flip) and can be neglected compared to the leading E1*E1 transition [Yan PR,D22,1652 (80)].
- In QCD-motivated calculation of soft-pion piece in E1*E1 transition, expect S-wave to dominate in the **non-relativistic limit** producing M(ππ) distribution similar to the one due to the 1st term [Voloshin,Zakharov,PRL,45,688(80); Novikov, Shifman, ZP,C8,43(81)]

 $|\mathbf{A}| \gg |\mathbf{B}|$

- Consistent with the phenomenological observation by Brown&Cahn, that M(ππ) in ψ(2S)→J/ψ(1S)ππ was well reproduced by assuming B=C=0
- Observation of Υ(2S)→Υ(1S)ππ with the same M(ππ) distribution was a great success of this theoretical framework and reinforced A-dominance dogma

$\Upsilon(3S) \rightarrow \Upsilon(1S) \pi \pi$ Anomaly

- Observation of doublepeak structure of M(ππ) was proclaimed anomalous
- A large body of theoretical work trying to explain the origin of this anomaly:

- Large final state interactions
 [Belanger,DeGrand,Moxhay,PR,D39,257(89);Chakravarty,Kim,Ko,PR,D50,389(94)]
- σ -meson in $\pi\pi$ system [Komada,Ishida,Ishida,PL,B508,31(01);PL,B518,47(01);Uehara Prog.Theor.Phys.109,265(03)]
- Exotic Υπ resonance [Voloshin, JTEP Lett., 37,69(83); Belanger et al ,PR,D39,257(89); Anisovich, Bugg, Sarantsev, Zhou, PR, D51,4619(95); Guo, Shen, Chiang, Ping, NP, A761,269(05).]
- Ad hoc constant term in amplitude [Moxhay, PR, D39, 3497(89)]
- Coupled channel effects [Lipkin, Thuan, PL, B206, 349(88); Zhou, Kuang, PR, D44, 756(91)]
- 3³S₁-n³D₁ mixing [Chakravarty,Kim,Ko,PR,D48,1212(93)]
- Relativistic corrections [Voloshin, PR, D74, 054022(06)]
- Observed distributions of $M(\pi\pi)$ in $\Upsilon(4S) \rightarrow \Upsilon(1S)\pi\pi$ and $\Upsilon(4S) \rightarrow \Upsilon(2S)\pi\pi$ add to the interest (see the next talk!)

This analysis

- Much larger statistics for Υ(3S)→Υ(1S)ππ, Υ(3S)→Υ(2S)ππ than previously available.
 – 1.14 fb⁻¹ at : (3S): 5M : (3S) with CLEO-III detector
- Analyze also $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi\pi$ present in the same $\Upsilon(3S)$ data sample (produced via $\Upsilon(3S) \rightarrow \Upsilon(2S)X$, $X=\pi\pi$ or $\gamma\gamma$):
 - 0.5M ;(2S)
- Perform 2D fit of A,B (and C) to [q², cosq_X] instead of 1D analysis of m_{ππ}
 - Assume A,B (and C) constant, but allow them to be complex
- Better experimental insight into decay structure of $\pi\pi$ transitions!

8

Upsilon dipion transition in CLEO DPF'06 Honolulu T. Skwarnicki 9

Expected "Dalitz" Plot Distributions

Matrix Elements Squared

 $\pi^+\pi^-$ data

$\Upsilon(3S) \rightarrow \Upsilon(2S) \pi \pi$

 $\pi^0\pi^0$ data

 $\Upsilon(3S) \rightarrow \Upsilon(1S) \pi \pi$

$\Upsilon(3S) \rightarrow \Upsilon(2S) \pi \pi$

 $\Upsilon(2S) \rightarrow \Upsilon(1S) \pi \pi$

 $\cos q_X$ vs. $M_{\pi\pi}$

8

Results for $\Upsilon(3S) \rightarrow \Upsilon(1S)\pi\pi$ with C = 0

Statistical errors only

	Pions Lep's		Re(<mark>B/A</mark>)	m(B/A)	
Individual tits	p + p -	e ⁺ e ⁻	-2.53 ± 0.05	$+1.18 \pm 0.08$	
	p ⁺ p ⁻	nim	-2.51 ± 0.04	+1.16 ± 0.06	
	p ⁰ p ⁰	e ⁺ e ⁻	-2.52 ± 0.09	+1.07 ± 0.15	
	b ₀ b ₀	nim	-2.43 ± 0.09	+1.31 ± 0.16	
mb tit	pp	 + -	-2.52 ± 0.03	+1.19 ± 0.05	

Good checks of systematic effects

based on isospin symmetry and lepton universality.

- |C/A| « |B/A| as theoretically expected
- Given statistical and systematic errors there is no evidence that C-term (spin flip) is needed: |C/A| = 0.45±0.18±0.36 (<1.1 90% CL).

Results

• Allowing C-term

Errors include systematic uncertainty

	C/A	B/A
Ƴ(3S)→Ƴ(1S)ππ	0.45±0.40	2.89±0.25

Assume no spin-flip transitions (C=0)

	Re(<mark>B/A</mark>)	Im(<mark>B/A</mark>)	B/A	Arg(<mark>B/A</mark>)
Ύ(3S)→Ύ(1S)ππ	-2.52±0.04	1.19±0.07	2.79±0.05	155±2°
Ύ(2S)→Ύ(1S)ππ	-0.75±0.15	0.00±0.11	0.75±0.15	180±9°
Ύ(3S)→Ύ(2S)ππ	-0.39±0.33	0.0±1.1	0.4±1.1	

Preliminary!

S,D-wave decomposition

• We can extract a fraction of S- and D-wave components implied by our fits:

• D-wave contribution is small, as expected

Conclusions

- Di-pion transitions among Y(3S), Y(2S) and Y(1S) are well described by a matrix element constrained by Chiral Symmetry for soft pion system, with form-factor parameters being complex and constant across the Dalitz plot.
- No evidence for significant coupling to heavy quark spins, as expected (|C/A|=0.45±0.40).
- The $\Upsilon(3S) \rightarrow \Upsilon(1S)\pi\pi$ anomaly explained by a large 2nd term in the chiral matrix element ($|B/A|=2.8\pm0.1$) with a non-trivial phase (arg(B/A)= 155±2°).
- This term is smaller, but still significant in Υ(2S)→Υ(1S)ππ
 (|B/A|=0.75±0.12, arg(B/A)= 180±9°).