D^o and D⁺ Hadronic Decays at CLEO

Steve Stroiney Cornell University CLEO collaboration

- D^0 and D^+ branching fractions
- Doubly-Cabibbo-suppressed branching fractions: $D^+ \rightarrow K^+ \pi^0$ and $D \rightarrow K^0_S \pi$ vs. $D \rightarrow K^0_L \pi$
- Dalitz analyses:

$$- D^+ \rightarrow \pi^+ \pi^+ \pi^-$$

$$- D^0 \rightarrow K^+ K^- \pi^0$$

D⁰ and D⁺ at Ψ(3770)

- We collide e^- and e^+ at the $\psi(3770)$ resonance (281 pb⁻¹ so far). This energy is just above threshold for $D^0 \overline{D}^0$ or $D^+ D^$ production, with no additional massive particles. e^+
- Identify D's from "beam-constrained mass" (M_{BC}) and ΔE .

$$M_{BC} \equiv \sqrt{(E_{beam})^2 - |\vec{p}_D|^2} \quad \text{(peaks at } D \text{ mass)}$$

$$\Delta E \equiv E_D - E_{beam} \quad \text{(peaks at zero)}$$

- Three ways to analyze an event:
 - Fully reconstruct one D or \overline{D} ("single tag").
 - Fully reconstruct both D and \overline{D} ("double tag").
 - Reconstruct one \overline{D} as a tag, then look for a particular decay of the D. This is useful when one particle can't be detected (e.g. K_L^0).

 $D^+ \rightarrow K^- \pi^+ \pi^+ D^- \rightarrow K^+ \pi^- \pi^-$

D

D

 e^{-}

The CLEO-c Detector

- Good momentum resolution: 0.6% at 1 GeV
- Good photon detection: π^0 mass resolution ~ 6 MeV
- Good particle ID: RICH (Cherenkov) & dE/dx \Rightarrow excellent π^+/K^+ separation
- Run primarily at $E_{CM} = 3.77$ GeV for $D\overline{D}$ production (this talk) and at

 E_{CM} = 4.17 GeV for D_{c} production.

Steve Stroiney

D Hadronic BFs: Overview

- The $D \overline{D}$ environment at CLEO-c is ideal for measurement of absolute D^0 and D^+ hadronic branching fractions.
 - Results do not depend on the luminosity or cross section.
- These branching fractions are an important input for B physics.
- We measure 3 D^0 and 6 D^+ decay modes, including the two reference modes $D^0 \rightarrow K^- \pi^+$ and $D^+ \rightarrow K^- \pi^+ \pi^+$.
- We previously published* results based on 56 pb⁻¹, and we are now updating with ~5x more data: 281 pb⁻¹. Both statistical and systematic uncertainties have improved.

Modes:

$$D^0 \rightarrow K^- \pi^+$$
 $D^+ \rightarrow K^- \pi^+ \pi^+$
 $D^+ \rightarrow K^0 \pi^+ \pi^0$
 $D^0 \rightarrow K^- \pi^+ \pi^0$
 $D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$
 $D^+ \rightarrow K^0_S \pi^+ \pi^- \pi^ D^0 \rightarrow K^- \pi^+ \pi^+ \pi^ D^+ \rightarrow K^0_S \pi^+$
 $D^+ \rightarrow K^- K^+ \pi^+$

* Q. He et al., Phys. Rev. Let. 95, 121801 (2005).

D Hadronic BFs: Method

- Reconstruct single-D candidates (single tags) and $D\overline{D}$ candidates (double tags) from the final-state particles.
- Require ΔE consistent with zero.
- Extract single and double tag yields by fitting $M_{_{BC}}$ plots.
- Using single and double tag yields, do a χ^2 fit for branching fractions and $N_{D\bar{D}}$.

Steve Stroiney

D Hadronic BFs: Yield Extraction

- We fit single and double tag peaks with a theoretically derived M_{BC} peak shape that includes the effects of initial state radiation, beam energy spread, momentum resolution, and the $\psi(3770)$ line shape.
- Double tag yields are obtained from a 2-dimensional fit of $M_{_{BC}}(D)$ vs. $M_{_{BC}}(\bar{D})$.
- Single tag yields are obtained from a 1-dimensional fit of M_{BC} . D and \overline{D} yields are extracted separately.

Steve Stroiney

D Hadronic BFs: Double Tag Yields

Steve Stroiney

D^o and D⁺ Hadronic Decays at CLEO – DPF/JPS 2006 – 10/31/2006

D Hadronic BFs: Single Tag Yields

D Hadronic BFs: Branching Fraction Fit

• We are determining 9 branching fractions, as well as the number of $D^0 \overline{D}^0$ and $D^+ D^-$ pairs, from 18 single tag yields and 45 double tag yields, so we do a χ^2 fit.

$$\begin{split} N_{i} &= \epsilon_{i} B_{i} N_{D\bar{D}} \\ \bar{N}_{j} &= \bar{\epsilon}_{j} B_{j} N_{D\bar{D}} \\ \implies N_{D\bar{D}} &= \frac{N_{i} \bar{N}_{j}}{N_{ij}} \frac{\epsilon_{ij}}{\epsilon_{i} \bar{\epsilon}_{j}} \\ B_{i} &= \frac{N_{ij} \bar{\epsilon}_{j}}{\bar{N}_{j}} \frac{\epsilon_{ij}}{\epsilon_{ij}} \\ B_{i} &= \frac{N_{ij} \bar{\epsilon}_{ij}}{\bar{N}_{j}} \\ B_{i} &= \frac{N_{ij} \bar{\epsilon}_{ij}}{\bar{N}_{ij}} \\ B_{i} &= \frac{N_{ij} \bar{\epsilon}_{ij}}{\bar{N}_{ij}} \\ B_{i} &= \frac{N_{ij} \bar{\epsilon}_{ij}}{\bar{R}_{ij}} \\ B_{i} &= \frac{N_{ij} \bar{\epsilon}_{ij}}{\bar{R}_{ij}} \\ B_{i$$

- This fit includes background subtractions on the yields and cross-feeds between modes.
- Systematic errors are included in the fit. When appropriate, they are correlated between tag modes (ex. tracking efficiencies).
 - Many systematics in $N_{D\bar{D}}$ cancel, as do systematics on the other-side D in branching fraction calculations.

D Hadronic BFs: Preliminary Results

10

$D^+ \rightarrow K^+ \pi^0$

Steve Stroiney

$D \to K_S^0 \pi$ vs. $D \to K_L^0 \pi$

- To first order, $B(D \to K_s^0 \pi) \approx B(D \to K_L^0 \pi)$ (from $D \to \overline{K}^0 \pi$).
- Interference from doubly-Cabibbo-suppressed process $D \to K^0 \pi$ has opposite sign for $K^0_s \approx (1/\sqrt{2})(\bar{K^0} K^0)$ and $K^0_L \approx (1/\sqrt{2})(\bar{K^0} + K^0)$.
- This produces an asymmetry between the decay rates (Bigi & Yamamoto):

$$R(D) \equiv \frac{B(D \to K_s^0 \pi) - B(D \to K_L^0 \pi)}{B(D \to K_s^0 \pi) + B(D \to K_L^0 \pi)} \sim \tan^2 \theta_C$$

Steve Stroiney

Quantum Correlation for D^0 and \overline{D}^0

- Since $D^0 \overline{D^0}$ is produced through a virtual photon (C=-1), decays of D^0 and $\overline{D^0}$ are correlated. (For example, they can't decay to states with the same CP.)
- Apparent "branching fraction" for a D^0 decay depends on how the \overline{D}^0 decayed, especially for CP eigenstates like $K_s^0 \pi^0$ and $K_L^0 \pi^0$.

$D \rightarrow K_s^0 \pi$ Measurements

• Take $B(D^+ \rightarrow K_s^0 \pi^+)$ from the D hadronic BF analysis (described earlier).

$D \rightarrow K_L^0 \pi$ Analysis Technique

- Reconstruct all particles except the K_{I}^{0} .
- Form missing mass squared:

$$M_{\rm miss}^2 \equiv (p_{\rm event} - p_{\bar{D}} - p_{\pi})^2$$

peaks an the kaon mass squared for $D \rightarrow K_L^0 \pi$ and $D \rightarrow K_S^0 \pi$.

• Remove $D \rightarrow K_s^0 \pi$ by vetoing events with extra tracks or π^0 's.

• Determine number of tags from M_{BC} and ΔE of tag \overline{D} candidates, and number of signal events from peak in missing mass squared.

$$B(D \to K_{L}^{0}\pi) = \frac{Y(\text{signal})}{Y(\text{tags}) \times \epsilon} \times R \qquad (R-1) \sim \text{few \%}$$

accounts for easier tag reconstruction
when the other *D* decays to $K_{L}^{0}\pi$
efficiency for finding signal
given that tag was found

$D \rightarrow K, \pi$ Results

$D \rightarrow K_s^0 \pi$ vs. $D \rightarrow K_L^0 \pi$ Asymmetry

• Compare rates by calculating asymmetry:

$$R(D) \equiv \frac{B(D \rightarrow K_s^0 \pi) - B(D \rightarrow K_L^0 \pi)}{B(D \rightarrow K_s^0 \pi) + B(D \rightarrow K_L^0 \pi)}$$

• Comparing $B(D^0 \rightarrow K_s^0 \pi^0)$ and $B(D^0 \rightarrow K_L^0 \pi^0)$,

 $R(D^0) = 0.122 \pm 0.024 \pm 0.030$

(Expect $R(D^0) = 2 \tan^2 \theta_c = 0.109 \pm 0.001$ from U-spin symmetry.*) * J.L. Rosner, Phys. Rev. D 74, 057502 (2006).

• Comparing $B(D^+ \rightarrow K_s^0 \pi^+)$ and $B(D^+ \rightarrow K_L^0 \pi^+)$,

 $R(D^+) = 0.030 \pm 0.016 \pm 0.021$

(No simple prediction.)

Final results will be submitted to PRL.

D^o and D⁺ Hadronic Decays at CLEO – DPF/JPS 2006 – 10/31/2006

PRELIMINARY

$D^+ \rightarrow \pi^+ \pi^+ \pi^-$ Dalitz Analysis

- E791 and FOCUS have analyzed $D^+ \!
 ightarrow \! \pi^+ \, \pi^- \! \pi^-$.
 - Fit by E791 finds σ enhancement (low-mass $\pi\pi$ S-wave) in the Dalitz plot.
 - FOCUS uses K-matrix approach.

$D^+ \rightarrow \pi^+ \pi^+ \pi^-$ Dalitz Results

Likelihood Fit including: Amplitude, phase, spin-dependent PW (*ie*. BW), angular distribution, Blatt-Weiskopf angular momentum penetration factor.

Mode	Fit Values			
	Relative Amplitude	Phase (degrees)	Fit Fraction (%)	
<mark>ρ(770)π⁺</mark>	1.0	0	20.0±2.3±0.9	
<mark>f₀(980)π+</mark>	1.4±0.2±0.2	12±10±5	4.1±0.9±0.3	
<mark>f₂(1270)π⁺</mark>	2.1±0.2±0.1	237±6±3	18.2±2.6±0.7	
f ₀ (1370)π⁺	1.3±0.4±0.2	-21±15±14	2.6±1.8±0.6	
f ₀ (1500)π⁺	1.1±0.3±0.2	-44±13±16	3.4±1.0±0.8	
σ pole	3.7±0.3±0.2	-3±4±2	41.8±1.4±2.5	
	Limits on Other Contributing Modes			
ρ (1450)π ⁺	0.9±0.5	51±22	<2.4	
$f_0(1710)\pi^+$	1.0±1.5	-17±90	<3.5	
$f_0(1790)\pi^+$	1.0±1.1	23±58	<2.0	
Non- resonant	0.17±0.14	-17±90	<3.5	
l=2 π ⁺ π ⁺ S-wave	0.17±0.14	23±58	<3.7	

CLEO preliminary: hep-ex/0607069

Steve Stroiney

$D^0 \rightarrow K^+ K^- \pi^0$ Dalitz Analysis

- Motivation:
 - Measurement of CKM angle γ (ϕ_3) from *B* decays requires input values of r_D and δ_D :

$$\frac{A(\bar{D}^{0} \to K^{*+} K^{-})}{A(\bar{D}^{0} \to K^{*+} K^{-})} = r_{D} e^{i\delta_{D}}$$

- r_D and δ_D can be determined from the $D^0 \rightarrow K^+ K^- \pi^0$ Dalitz plot.

- Method:
 - 9 fb⁻¹ collected near Y(4S) with CLEO III detector
 - Consider D^0 's from $D^{*+} \rightarrow D^0 \pi^+$, tagging flavor of the D^0 by the pion's charge.

Steve Stroiney

$D^0 \rightarrow K^+ K^- \pi^0$ Dalitz Results

Dalitz plot and projections (a) 3110406-002 (mK+π⁰)² [GeV²/c⁴] Events per 0.02 GeV²/c⁴ (b)0.6 1.4 1.8 0.6 1.0 1.4 1.8 $(m_{K}-\pi^{0})^{2}$ [GeV²/c⁴] (mK+n⁰)² [GeV²/c⁴] Events per 0.02 GeV²/c⁴ (c) Events per 0.02 GeV²/c⁴ ಕ (d) Κ Φ 20 0.6 1.0 1.4 1.8 (m_K-_{π⁰)² [GeV²/c⁴]} $(m_{K}+K^{-})^{2}$ [GeV²/c⁴]

C. Cawlfield *et al.*, Phys. Rev. D **74**, 031108(R) (2006).

Mode	Fit Values		
	Relative Amplitude	Phase (degrees)	Fit Fraction (%)
K*+K-	1.0	0	46.1±3.1
K*-K+	0.52±0.05±0.04	332±8±11	12.3±2.2
$\phi \pi^0$	0.64 ±0.04	326±9	14.9±1.6
NR	5.62±0.45	220±5	36.0±3.7

Read off the values from the DP fit:

 $r_{\rm D} = 0.52 \pm 0.05 \pm 0.04$ $\delta_{\rm D} = (332 \pm 8 \pm 11)^{\circ}$

□ First measurement of δ_D . □ Significant improvement on r_D over previous value using K*K BF's

Summary

- CLEO continues to generate measurements of D^0 and D^+ decays.
- Absolute *D* hadronic branching fractions set the scale for *D* decays.
- Measurements of $D^+ \to K^+ \pi^0$ and $D \to K_s^0 \pi$ vs. $D \to K_L^0 \pi$ provide a complete set of measurements for the doubly-Cabibbo-suppressed $D \to K \pi$ decays.
- Dalitz analyses measure substructure of *D* decays, including input for measurement of CKM angle y from *B* decays.
- We will approximately triple our $\psi(3770)$ dataset over the next year, so more results will be coming.