Hadronic Charm Decays & D°-D° Mixing

Sheldon Stone, Syracuse University

What We Hope to Learn

Charm Mixing & CP Violation

Can we see new physics? SM mixing & CP violation is small, so new effects don't have large SM background as in the K or B systems

Hadronic Charm Decays

Engineering numbers useful for other studies

 B→Charm is dominant, so knowing lots about charm is useful, e.g. absolute ℬ's, resonant substructure, phases on Dalitz plots, etc...

Learn about Strong Interactions, esp. final state interactions

Absolute Charm Meson Branching Ratios & Other Hadronic Decays

 D° , D^{+} & D_{S}

Experimental methods

•DD production at threshold: used by Mark III, and more recently by CLEO-c and BES-II.

Unique event properties
 Only DD not DDx produced

Large cross sections:

 $\sigma(D^{\circ}\overline{D}^{\circ}) = 3.72\pm0.09$ nb $\sigma(D^{+}D^{-}) = 2.82\pm0.09$ nb

 $\sigma(D_S D_S^*) = \sim 1 \text{ nb}$

 Ease of B measurements using "double tags"

B_A = # of A/# of D's
 B-factories (e⁺e⁻) + fixed target & collider experiments at hadron machines

•D displaced vertex •D^{*+} $\rightarrow \pi^+ D^0$ tag, or $D_S^* \rightarrow \gamma D_S$

FLAVOR Physics & CP Violation, April 9-12, 200

281 pb⁻¹ of data at $\psi(3770)$

FLAVOR Physics & CP Violation, April 9-12, 200

Absolute B Results for D⁺ & D^o 57 pb⁻¹

CLEO D_S⁺ Results at 4170 MeV

- Since e⁺e⁻→D_S*D_S, the D_S from the D_S* will be smeared in beam-constrained mass.
- ∴cut on M_{BC} & plot invariant mass (equivalent to a p cut)

FLAVOR Physics & CP Violation, April 9-12, 200

Inv Mass (GeV)

$D_{s}^{+} \rightarrow K^{-}K^{+}\pi^{+}$ from CLEO-c (72 pb⁻¹)

$D_{s}^{+} \rightarrow K^{-}K^{+}\pi^{+}$ from Fields

From Sandra Malvezzi CIPANP 2000 AIP Conference Proceedings -- December 12, 2000 -- Volume 549, Issue 1, p. 569

Fit results			
	Fit frac.	Phase (Deg)	
K ^{*0} (892) K [*] ₀ (1430)	0.44 ± 0.01 0.06 ± 0.01	0.0 (fixed) 114 ±5	
φ (1020) f ₀ (980)	0.45 ± 0.01 0.16 ± 0.01	148 ± 4 135 ± 4	
f _i (1710)	0.04 ± 0.01	106 ± 8	

Single & Double D_S⁺ Tags in 76 pb⁻¹

Modes: Different selection criteria than other analyses Clean double tag signal

Invariant mass2 (GeV

1.98

1.96

3

12.67

Absolute \mathcal{B} Results for D_S^+ 76 pb⁻¹

Mode	<i>В</i> (%) (CLEO-c)	B (%) PDG
K _S K⁺	$1.28^{+0.13}_{-0.12}\pm0.07$	1.80±0.55
K ⁺ K ⁻ π ⁺	$4.54^{+0.44}_{-0.42}\pm0.25$	4.3±1.2
Κ⁺Κ⁻ π⁺π ^ο	$4.83^{+0.49}_{-0.46}\pm0.46$	-
$\pi^+\pi^+\pi^-$	$1.02^{+0.11}_{-0.10} \pm 0.05$	1.00±0.28

About ±11% error

Results are *preliminary*: more modes are being added & more data is being taken
 What about D_S→φπ⁺?

The Effective $\mathcal{B}(D_S \rightarrow \phi \pi^+)$

- **CLEO does not quote it.** Because of the presence of $f_0\pi^+$ & other interferences on the Dalitz plot, the *B* you get depends on your mass resolution & your mass cut
- Using a ±10 MeV K⁺K⁻ mass cut about the φ mass (91% efficient on the φ), I find from the observed ratio of φπ/KKπ events: B^{eff}(D_S→φπ⁺)=(3.49±0.39)%. For ±20 MeV cut (97% efficient) (3.73±0.42)%, which gives a scale of the mass cut sensitivity

Previous Measurements of $\mathcal{B}^{eff}(D_S \rightarrow \phi \pi^+)$

■ Compare fully and partially reconstructed B→D*D_{S(J)}* decays

- CLEO $\mathcal{B}^{eff}(D_S \rightarrow \phi \pi^+) = (3.6 \pm 0.8 \pm 0.5)\%$
- BaBar $\mathcal{B}^{eff}(D_S \rightarrow \phi \pi^+) = (4.8 \pm 0.5 \pm 0.4)\%$
- BaBar $\mathcal{B}^{eff}(D_S \rightarrow \phi \pi^+) = (4.8 \pm 0.4 \pm 0.5)\%$ (Marsiske's talk)
- BES $\mathscr{B}^{eff}(\mathsf{D}_{\mathsf{S}} \to \phi \pi^{+}) = (3.9^{+5.1+1.8}_{-1.9-1.1})\%$

Compare with my estimate

 $\mathscr{B}^{eff}(\mathsf{D}_{\mathsf{S}} \rightarrow \phi \pi^{+}) = (3.5 \pm 0.4)\%.$

■ Upper limit based on counting all known modes <4.8% @ 90% c.I \rightarrow 5.2% based on current data (Muheim & Stone Phys. Rev. D 49, 3767 (1994)). They also predicted $\mathcal{B}(D_S \rightarrow \phi \pi^+)=(3.6\pm0.6)\%$

Inclusive ss Mesons from D decays

	η (%)	η' (%)	<i>\$\$</i> (%)
Do	$9.4 \pm 0.4 \pm 0.6$	$2.6 \pm 0.2 \pm 0.2$	$1.0 \pm 0.1 \pm 0.1$
D+	$5.7 \pm 0.5 \pm 0.5$	$1.0 \pm 0.2 \pm 0.1$	$1.1 \pm 0.1 \pm 0.2$
D _S	$32.0 \pm 5.6 \pm 4.7$	11.9 ± 3.3 ± 1.2	15.1 ± 2.1 ±1.5

Done using double tag events
 φ & η' rates are much higher for D_S, useful for hadron collider b experiments

Can be used to check $\mathscr{B}^{eff}(D_S \rightarrow \phi \pi^+)$

- Procedure: take all modes containing φ, η' & η all measured wrt to φπ (bands are ±1σ). If new modes are found the slope of the bands would increase
- CLEOc measurements are horizontal lines, also at $\pm 1\sigma$)
- Consistent with a 3.5% $\phi \pi$ effective branching ratio
- If more modes are found slope would increase, implying a lower $\phi \pi$ branching ratio

The Real $\mathcal{B}(D_S \rightarrow \phi \pi^+)$

- You can use a Dalitz plot fit (i.e. FOCUS) to get the fraction of φπ. This is not the same procedure that was done in the past of merely cutting on the K⁺K⁻ invariant mass about the φ.
- The FOCUS Dalitz plot analysis has the φπ⁺ fraction of K⁺K⁻π⁺ =0.45±0.01
- Dividing the CLEO number for $\mathcal{B}(D_S \rightarrow K^+K^-\pi^+)$ by $\mathcal{B}(\phi \rightarrow K^+K^-)=.491$, gives $\mathcal{B}(D_S \rightarrow \phi\pi^+)=(4.16\pm0.41)\%$
- This is the branching ratio that is most appropriate to compare with theoretical calculations

Cabibbo Suppressed Decays

and the second second	A CARDON AND A CARDO		Are deliver address.
CLEO-c	Mode	Branching Ratio x 10 ⁻³	PDG
ľ	$D^0 \rightarrow \pi^+ \pi^-$	$1.39 \pm 0.04 \pm 0.04 \pm 0.03 \pm 0.01$	$1.38 {\pm} 0.05$
	$D^0 ightarrow \pi^0 \pi^0$	$0.79 \pm 0.05 \pm 0.06 \pm 0.01 \pm 0.01$	$0.84 {\pm} 0.22$
	$D^0 ightarrow \pi^+\pi^-\pi^0$	$13.2 \pm 0.2 \pm 0.5 \pm 0.2 \pm 0.1$	11±4
	$D^0 \rightarrow \pi^+ \pi^+ \pi^- \pi^-$	$7.3 \pm 0.1 \pm 0.3 \pm 0.1 \pm 0.1$	$7.3 {\pm} 0.5$
	$D^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$	$9.9\pm 0.6\pm 0.7\pm 0.2\pm 0.1$	\sim
	$D^0 \rightarrow \pi^+ \pi^+ \pi^- \pi^- \pi^0$	$4.1\pm 0.5\pm 0.2\pm 0.1\pm 0.0$	
	$D^0 \rightarrow \omega \pi^+ \pi^-$	$1.7\pm 0.5\pm 0.2\pm 0.0\pm 0.0$	
	$D^0 \rightarrow \eta \pi^0$	$0.62\pm 0.14\pm 0.05\pm 0.01\pm 0.01$	
	$D^0 \rightarrow \pi^0 \pi^0 \pi^0$	< 0.35 (90% CL)	
	$D^0 \rightarrow \omega \pi^0$	< 0.26 (90% CL)	
	$D^0 \rightarrow \eta \pi^+ \pi^-$	< 1.9 (90% CL)	
BaBar			
Dabai	$\square^+ \searrow V^+ = 0$	0 246+0 046+0 024+0 016	
	$D \rightarrow K^{*} h^{*}$	0.240±0.040±0.024±0.010	
	$D^+ \rightarrow \pi^+ \pi^0$	1.22±0.10±0.08±0.08	1.33±0.22
CLEO-c	$D^+ \to \pi^+ \pi^0$	$1.25 \pm 0.06 \pm 0.07 \pm 0.04$	$1.33 {\pm} 0.22$
	$D^+ \rightarrow \pi^+ \pi^+ \pi^-$	$3.35{\pm}0.10{\pm}0.16{\pm}0.12$	$3.1{\pm}0.4$
	$D^+ \rightarrow \pi^+ \pi^0 \pi^0$	$4.8 {\pm} 0.3 {\pm} 0.3 {\pm} 0.2$	
	$D^+ \rightarrow \pi^+ \pi^+ \pi^- \pi^0$	$11.6 \pm 0.4 \pm 0.6 \pm 0.4$	
	$D^+ \to \pi^+\pi^+\pi^+\pi^-\pi^-$	$1.60 {\pm} 0.18 {\pm} 0.16 {\pm} 0.06$	$1.73 {\pm} 0.23$
	$D^+ \to \eta \pi^+$	$3.61 {\pm} 0.25 {\pm} 0.23 {\pm} 0.12$	$3.0{\pm}0.6$
	$D^+ \rightarrow \omega \pi^+$	< 0.34 (90% CL)	

New value for phase shift in $D \rightarrow \pi\pi$ modes between $\Delta I=3/2$ & $\Delta I=1/2$ amplitudes of (86.4±2.8±3.3)°

Searches for New Physics in Charm Decays

D°-D° Mixing

 $= (M - i\Gamma/2)$

Mixing could proceed via

the presence of d-type quarks in the loop makes the SM expectations for D^o- D^o mixing

small compared with systems involving u-type quarks in the box diagram because these loops include 1 dominant super-heavy quark (t): K° (50%), B° (20%) & B_s (50%)

New physics in loops implies
 x =ΔM/Γ>> y =ΔΓ /2Γ; but long range effects —O— complicate predictions

From H. Nelson, updated by A.A. Petrov hep-ph/0311371

D^{o} - D^{o} mixing: Wrong-sign K⁻ π^+

Complicated by interference between DCSD & mixing [strong phase δ – will be measured by CLEOc] $x' \equiv x \cos \delta + y \sin \delta$

$$R_{ws}(t) = e^{-\Gamma t} \left(R_D + \sqrt{R_D} y' \Gamma t + \frac{1}{4} (x'^2 + y'^2) (\Gamma t)^2 \right)$$

Complicated by CP violation

Stolen from
Ligeti
$$B \propto -e^{-i\delta} \sin^{2}\theta_{C}$$
$$D^{*+}$$
$$D^{0}\pi^{+}_{s}$$
$$-\frac{1}{2}(ix+y)t$$
$$D^{0}\pi^{+}_{s}$$
$$D^{0}\pi^$$

Experiment	X′ ² (x10⁻³) <@95 % CL		y′(95% C.L.) (x10⁻³)	
	CPV	No CPV	CPV	No CPV
BaBar (2003)	2.2	2.0	-56 <y′<39< td=""><td>-27<y′<22< td=""></y′<22<></td></y′<39<>	-27 <y′<22< td=""></y′<22<>
FOCUS (2004)	0.80	0.83	-120 <y'<67< td=""><td>-72<y'<41< td=""></y'<41<></td></y'<67<>	-72 <y'<41< td=""></y'<41<>
CLEO (2000)	0.82	0.78	-58 <y′<10< td=""><td>-52<y′<2< td=""></y′<2<></td></y′<10<>	-52 <y′<2< td=""></y′<2<>
Belle (2005)*	0.72	0.72	-28 <y′<21< td=""><td>-9.9<y'<6.8< td=""></y'<6.8<></td></y′<21<>	-9.9 <y'<6.8< td=""></y'<6.8<>

Other Studies

- CDF WS/RS in Kπ is (4.05±0.21±0.12)x10⁻³ (350 pb⁻¹)
- Direct measurements of C=+ and C=- D⁰ lifetime differences (y_{CP})
- WS rate in semileptonic decays measures (x²+y²)/2 directly

Table 7. Summary of mixing limits (95 % cl) from D^0 semileptonic decay studies.

Experiment	R_M	$\sqrt{x^2 + y^2}$
$CLEO^{48}$	0.0091	0.135
BaBar ⁴⁹	0.0046	0.1
Belle ⁵⁰	0.0016	0.056

FLAVOR Physics & CP Violation, April 9-12, 200

Experiment	$y_{CP}(\%)$
FOCUS ⁴⁴	$3.4\pm1.4\pm0.7$
$CLEO^{43}$	$-1.2 \pm 2.5 \pm 1.4$
Belle, untagged ⁴⁵	$-0.5 \pm 1.0 \pm 0.8$
Belle, tagged ⁴⁶	$1.2\pm0.7\pm0.4$
BaBar ⁴⁷	$0.8 \pm 0.4^{+0.5}_{-0.4}$
	-0.4

Dalitz Plot Analyses: $D^0 \rightarrow K_S \pi^+ \pi^-$

CLEO: $D^0 \rightarrow K_S \pi^+ \pi^-$ full time dependent analysis, compared with Belle semileptonic analysis Essential feature: distinct timedependence of D_{CP+} & D_{CP-} (CP+≡1, CP-≡1) $D_1(t) \sim \exp(-i(m_1 - i\Gamma_1/2)t)$ $D_2(t) \sim exp(-i(m_2 - i\Gamma_2/2)t)$

Limits are (-4.5<x<9.3)% & (-6.4<y<3.6) %, @ 95% C.L., without assumptions regarding CP-violating parameters.</p>

$D^0 \rightarrow K^+ \pi^- \pi^0$

BaBar: Uses Dalitz plot to enhance Cabibbo favored rate since it proceeds largely via $K^{-}\rho^{+}$, while wrong-sign rate goes to $K^{*+}\pi^-$ & $K^{*o}\pi^o$ For CP conserving fit $R_{M} = (0.23^{+0.18}_{-0.14} \pm .04) \times 10^{-3}$ ■ R_M<0.54x10⁻³ @ 95% cl R_M is consistent with no mixing at 4.5% cl

CP/T Violation

- Unexpectedly large CP violation asymmetries may be a better signature for new physics (0.01-0.001)
- CP violation can be studied in a variety of ways:
 - Direct CP violation
 - CP violation in mixing
 - T violation in 4-body decays of D⁰/D⁺ (assuming CPT) and studying triple product correlations
 - Exploiting quantum coherence of \overline{DD} produced in $\psi(3770)$ decays (Dave Cinabro's talk)

CP/T Violation: some recent data

Experiment	Decay mode	A _{CP} (%)	Notes
BaBar	$D^+ \rightarrow K^- K^+ \pi^+$	1.4±1.0 ±0.8	
BaBar	$D^+ \rightarrow \phi^+ \pi^+$	0.2±1.5±0.6	Res. Substr.
BaBar	$D^+ \to \mathrm{K}^{*0} \mathrm{K}^+$	0.9±1.7±0.7	Of D⁺→K⁺K⁺π⁺
CLEO II.V	$D^0 \rightarrow \pi^+ \pi^- \pi^0$	1 ⁺⁹ ₋₇ ±8	Dalitz plot analysis
CDF	$D^0 \rightarrow K^+K^-$	$2.0 \pm 1.2 \pm 0.6$	Direct CPV
CDF	$D^0 \rightarrow \pi^+ \pi^-$	$1.0 \pm 1.3 \pm 0.6$	Direct CPV
FOCUS	$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$	1.0 ±5.7±3.7	T violation
FOCUS	$D^+ \rightarrow K^{o}K^{+}\pi^{+}\pi^{-}$	2.3 ±6.2±2.2	product
FOCUS	$D_{S} \rightarrow K^{o}K^{+}\pi^{+}$	-3.6 ±6.7±2.3	correlations

FLAVOR Physics & CP Violation, April 9-12, 2005

Conclusions on Absolute B's

D meson absolute B scale now becoming well known:

- B(D⁺→K⁻π⁺π⁺) =(9.43±0.31)% [CLEOc+PDG] error 3.3%→ 2.1% (in a few weeks)
- B(D^o→K⁻π⁺) =(3.85±0.07)% [CLEOc+PDG]

error $1.9\% \rightarrow 1.4\%$ (in a few weeks)

• $B(D_S \rightarrow K^- K^+ \pi^+) = 4.54^{+0.44}_{-0.42} \pm 0.25$ [CLEOc]

error $11\% \rightarrow \sim 4-6\%$ (this summer)

■ $\mathcal{B}^{eff}(D_S \to \phi \pi^+) = (3.49 \pm 0.39)\%$ [SS]

 Best to change base branching ratio for D_S from φπ to something else. Suggest K⁺K⁻π⁺, or K_SK⁺
 Already quite useful: # of charm particles/B decay: 1.09±0.04 (includes D^o, D⁺, D_S, Λ_c, Ξ_c, 2x charmonium)

Conclusions II

Many more Cabibbo suppressed & DCS modes found. Large phase shifts in $D \rightarrow \pi\pi$

No definitive evidence yet for charm mixing

Best limits are ~|y'|<2.5% & |x'²|<7.2x10⁻³ @ 95% cl

 Hints from Belle in wrong sign K⁻π⁺ decays (only 3.9% cl for no mixing)

 Hints from BaBar in wrong sign K⁺π⁻π^o decays (only 4.5% cl for no mixing)

No observations of CP Violation

The End

$D^+ \rightarrow K^- \pi^+ \pi^+$ at the ψ'' (CLEO-c)

Single tags

Double

57 pb⁻¹ of data at $\psi(3770)$, CLEO now has 281 pb⁻¹

FLAVOR Physics & CP Violation, April 9-12, 200