Recent QCD Results from CLEO-c April, 2006 Meeting of the American Physical Society

Todd K. Pedlar

Luther College, Decorah, IA, for the CLEO Collaboration

Todd K. Pedlar Recent QCD Results from CLEO-c

Outline

Introduction

- CESR and CESR-c
- CLEO and CLEO-c
- 2 Physics at the Υ Resonances
 - CLEO ↑(nS) Data Sets
 - $\Upsilon(nS)$ Leptonic Widths and Branching Fractions
 - Υ(nS) Hadronic Transitions
 - Physics at the $\psi(3770)$ and above
 - DD at ψ(3770)
 - A Preview: *D_s* Physics
 - $\psi(nS) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773$ MeV
 - Higher Charmonia: ψ(4040), ψ(4160), Υ(4260)

• • • • • • • •

CESR and CESR-c CLEO and CLEO-c

Born 148 years ago today...

Todd K. Pedlar Recent QCD Results from CLEO-c

Introduction

Physics at the Υ Resonances Physics at the $\psi(3770)$ and above

CESR and CESR-c CLEO and CLEO-c

Outline

Introduction CESR and CESR-c CLEO and CLEO-c Ocleo ↑(nS) Data Sets • $\Upsilon(nS)$ Leptonic Widths and Branching Fractions • $\Upsilon(nS)$ Hadronic Transitions • $D\overline{D}$ at $\psi(3770)$ • A Preview: *D*_s Physics • $\psi(nS) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

< ロ > < 同 > < 回 > < 回 >

CESR and CESR-c CLEO and CLEO-c

CESR/CESR-c at Cornell

- The Cornell Electron Storage Rings have been in operation at Cornell University for over 25 years
 - Initated the era of B-physics
 - Subsequently rejuvenated the study of Υ resonances
 - Most recently became CESR-c, with a focus the charm region

(日)

Introduction

Physics at the ↑ Resonances

Physics at the $\psi(3770)$ and above

CESR and CESR-c CLEO and CLEO-c

Outline

Introduction CESR and CESR-c CLEO and CLEO-c Ocleo ↑(nS) Data Sets • $\Upsilon(nS)$ Leptonic Widths and Branching Fractions • $\Upsilon(nS)$ Hadronic Transitions • $D\overline{D}$ at $\psi(3770)$ • A Preview: *D*_s Physics • $\psi(nS) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

< ロ > < 同 > < 回 > < 回 >

Introduction

Physics at the Υ Resonances Physics at the $\psi(3770)$ and above

CESR and CESR-c CLEO and CLEO-c

CLEOIII

- 7800-element Csl calorimeter
 - Covers 93% of 4π
 - Excellent energy resolution $(\Delta E/E \sim 4\% \text{ at } 100 \text{ MeV})$
- 47-layer drift chamber
 - Covers 93% of 4π
 - Excellent tracking resolution(Δp/p ~ 0.6% at 1 GeV)

< ロ > < 同 > < 回 > < 回 > < 回 > <

CESR and CESR-c CLEO and CLEO-c

CLEO-c

- Most subdetectors identical to CLEOIII
- Silicon Vertex detector replaced with low mass vertex tracker
- Magnetic field $1.5T \rightarrow 1.0T$

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

< ロ > < 同 > < 回 > < 回 >

Outline

CESR and CESR-c CLEO and CLEO-c Physics at the [↑] Resonances 2 CLEO ↑(nS) Data Sets • $\Upsilon(nS)$ Hadronic Transitions • $D\overline{D}$ at $\psi(3770)$ • A Preview: *D*_s Physics • $\psi(nS) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

CLEO Υ (nS) Data Sets Υ (nS) Leptonic Widths and Branching Fractions Υ (nS) Hadronic Transitions

CLEO $\Upsilon(nS)$ Data Sets

 CLEO III ran on the Υ Resonances for a year between 2001 and 2002, collecting samples of Υ decays larger by factors of 10-20 compared to previous best (CLEO II)

UTHER

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

- Among important bottomonium results that I'll not talk about are
 - Discovery of the 1D state (first CLEOIII 'confrontation' with LQCD) PRD 70, 032001 (2004)
 - Discovery of a non- $\pi\pi$ hadronic transition ($\chi_{b1,2}(2P) \rightarrow \omega \Upsilon(1S)$) PRL 92, 222002 (2004)
 - Discovery of ππ transitions between non-vector states PRD 73, 012003 (2006)

• □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

Outline

< ロ > < 同 > < 回 > < 回 >

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

・ロト ・ 一下・ ・ 日 ・ ・ 日

- The leptonic width of a quarkonium state is one of the basic parameters calculable in LQCD.
- At CLEO, we have recently measured anew decays of all three Υ(nS) states that lie below open-bottom threshold to all three lepton flavors.
- Additionally [later] we have measured e⁺e⁻ widths for each of the 3 lowest charmonium resonances that couple to e⁺e⁻

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

$\mu^+\mu^-$ Branching Fractions

- In 2005, we published new measurements of $\mathcal{B}(\Upsilon(nS) \rightarrow \mu^+ \mu^-)$
- Based on 1.1 1.2fb⁻¹ at each ↑(nS)
- Open histograms: all on-resonance data satisfying analysis cuts
- Shaded: scaled continuum data
- Points with errors: difference

< ロ > < 同 > < 回 > < 回 >

UTHER COLLECE

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

$\mu^+\mu^-$ Branching Fractions

 $egin{aligned} \mathcal{B}_{\mu\mu}(\Upsilon(1\mathrm{S})) &= 2.49 \pm 0.02 \pm 0.07\% \ \mathcal{B}_{\mu\mu}(\Upsilon(2\mathrm{S})) &= 2.03 \pm 0.03 \pm 0.08\% \ \mathcal{B}_{\mu\mu}(\Upsilon(3\mathrm{S})) &= 2.39 \pm 0.07 \pm 0.10\% \end{aligned}$

PRL 94 012001 (2005)

・ロト ・四ト ・ヨト ・ヨト

ъ

UTHER

COLLEGE

 $\begin{array}{l} {\sf CLEO} \ensuremath{\,^{\mbox{cLEO}}\/} nS) \mbox{ Data Sets} \\ \hline \ensuremath{\,^{\mbox{charge}}\/} nS) \mbox{ Leptonic Widths and Branching Fractions} \\ \hline \ensuremath{\,^{\mbox{charge}}\/} nS) \mbox{ Hadronic Transitions} \end{array}$

< ロ > < 同 > < 回 > < 回 >

e^+e^- Widths of $\Upsilon(3S)$, $\Upsilon(2S)$ and $\Upsilon(1S)$

More recently, we have reported measurements of the Γ_{ee} for $\Upsilon(nS)$ with significant improvement in precision (c.f Relative Uncertainty on PDG 2004 Averages):

$$\Upsilon(1S)$$
 : 2.2% $\Upsilon(2S)$: 4.2% $\Upsilon(1S)$: 9.4%

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

Γ_{ee} Method

Hadronic events at 3S: dashed line is sum of bkg

• 1/s:
$$\gamma^* \rightarrow \ell^+ \ell^-, q \overline{q}$$

• In(s):
$$e^+e^- \rightarrow e^+e^-\gamma\gamma$$

UTHER COLLECE

▶ < ⊒ >

Cosmics/beam-gas

Next: fit distribution, get $\Gamma_{ee}\Gamma_{had}/\Gamma_{tot}$

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

Γ_{ee} Method

Hadronic events at 3S: dashed line is sum of bkg

• 1/s:
$$\gamma^* \rightarrow \ell^+ \ell^-, q \overline{q}$$

•
$$ln(s): e^+e^- \rightarrow e^+e^-\gamma\gamma$$

Cosmics/beam-gas

● Ŷ(2S,1S)tails

Next: fit distribution, get $\Gamma_{ee}\Gamma_{had}/\Gamma_{tot}$

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

Γ_{ee} Method

 $\label{eq:cleo} \begin{array}{l} \mathsf{CLEO}\; \Upsilon(nS) \; \text{Data Sets} \\ \boldsymbol{\Upsilon}(nS) \; \text{Leptonic Widths and Branching Fractions} \\ \boldsymbol{\Upsilon}(nS) \; \text{Hadronic Transitions} \end{array}$

Γ_{ee} Results

$\Gamma_{ee}\Gamma_{had}/\Gamma_{tot}(1S)$	$(1.252 \pm 0.005 \pm 0.019) \; \rm keV$	-
$\Gamma_{ee}\Gamma_{had}/\Gamma_{tot}(2S)$	$(0.581 \pm 0.006 \pm 0.009) \text{ keV}$	%
$\Gamma_{ee}\Gamma_{had}/\Gamma_{tot}(3S)$	$(0.413 \pm 0.004 \pm 0.006) \text{ keV}$	_
$\Gamma_{ee}(1S)$	$(1.354 \pm 0.005 \pm 0.020) \text{ keV}$	1.5
$\Gamma_{ee}(2S)$	$(0.619 \pm 0.007 \pm 0.009)$ keV	1.9
$\Gamma_{ee}(3S)$	$(0.446 \pm 0.004 \pm 0.007)$ keV	1.8
$\Gamma_{ee}(2S)/\Gamma_{ee}(1S)$	$(0.457 \pm 0.006 \pm 0.003)$	1.5
$\Gamma_{ee}(3S)/\Gamma_{ee}(1S)$	$(0.329 \pm 0.004 \pm 0.002)$	1.3
$\Gamma_{ee}(3S)/\Gamma_{ee}(2S)$	$(0.720 \pm 0.011 \pm 0.006)$	1.7

ъ

ヘロト ヘ回ト ヘヨト ヘヨト

LUTHER

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

Comparison to Previous Experimental Results

Todd K. Pedlar Recent QCD Results from CLEO-c

 $\begin{array}{l} \mbox{CLEO } \Upsilon(nS) \mbox{ Data Sets} \\ \mbox{$\Upsilon(nS)$ Leptonic Widths and Branching Fractions} \\ \mbox{$\Upsilon(nS)$ Hadronic Transitions} \end{array}$

Comparison to unquenched LQCD

The best object for comparison is: $\frac{\Gamma_{ee}(\Upsilon(2S))M^{2}(\Upsilon(2S))}{\Gamma_{ee}(\Upsilon(1S))M^{2}(\Upsilon(1S))}$ CLEO-c: 0.514 ± 0.007 PRL 96, 092003 (2006). LQCD: 0.48 ± 0.05 PRD 72, 094507 (2005).

< ロ > < 同 > < 回 > < 回 >

 $\begin{array}{l} \mbox{CLEO } \Upsilon(nS) \mbox{ Data Sets} \\ \mbox{$\Upsilon(nS)$ Leptonic Widths and Branching Fractions} \\ \mbox{$\Upsilon(nS)$ Hadronic Transitions} \end{array}$

$$\Upsilon(nS) \rightarrow \tau \tau$$

- We have recently measured $\tau \tau$ decays at all 3 lowest $\Upsilon(nS)$ resonances
- Previously: $\mathcal{B}(\Upsilon(1S) \rightarrow \tau \tau)$ known to 10%, $\Upsilon(2S) \rightarrow \tau \tau$ "seen", $\Upsilon(3S) \rightarrow \tau \tau$ unknown.
- Use 1-prong τ decays ($\tau \rightarrow h\nu$, $\tau \rightarrow \mu\nu\nu$), about 75%.
- Ratio to $\mu^+\mu^-$ reported:

$$\mathcal{R} \equiv rac{\mathcal{B}(\Upsilon(\mathrm{nS})
ightarrow au au)}{\mathcal{B}(\Upsilon(\mathrm{nS})
ightarrow \mu^+ \mu^-)}$$

< ロ > < 同 > < 回 > < 回 >

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

$\Upsilon(1S) \rightarrow \tau \tau$: **Preliminary**

Todd K. Pedlar Recent QCD Results from CLEO-c

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

LUTHER

ž

$\Upsilon(2S) \rightarrow \tau \tau$: Preliminary

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

LUTHER

COLLEGE

ž

$\Upsilon(3S) \rightarrow \tau \tau$: **Preliminary**

Todd K. Pedlar Recent QCD Results from CLEO-c

CLEO Υ (nS) Data Sets Υ (nS) Leptonic Widths and Branching Fractions Υ (nS) Hadronic Transitions

$\Upsilon(nS) \rightarrow \tau \tau$: **Preliminary**

Todd K. Pedlar

Recent QCD Results from CLEO-c

CLEO Υ (nS) Data Sets Υ (nS) Leptonic Widths and Branching Fractions Υ (nS) Hadronic Transitions

$R_{\tau\tau} \equiv (\mathcal{B}_{\tau\tau})/(\mathcal{B}_{\mu\mu})$: Preliminary

Todd K. Pedlar

Recent QCD Results from CLEO-c

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

COLIECE

Outline

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

$\Upsilon(nS)$ Hadronic Transitions

Some new developments of late in hadronic transitions among $\Upsilon(nS)$ states:

- CLEO: finalizing high-statistics studies of $\pi^+\pi^-$ transitions $\Upsilon(nS) \rightarrow \Upsilon(mS)\pi\pi$ Plots shown today are preliminary
- Belle: Observed $\Upsilon(4S) \rightarrow \Upsilon(1S) \pi^+ \pi^-$
- BaBar: Observed $\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^+\pi^-$ and $\Upsilon(4S) \rightarrow \Upsilon(2S)\pi^+\pi^-$

and an interesting picture emerges...

< ロ > < 同 > < 回 > < 回 >

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

$\Upsilon(nS)$ Hadronic Transitions

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

$\Upsilon(nS)$ Hadronic Transitions

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

$\Upsilon(nS)$ Hadronic Transitions

CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Leptonic Widths and Branching Fractions $\Upsilon(nS)$ Hadronic Transitions

< ロ > < 同 > < 回 > < 回 >

Some Additional Appetizers

More CLEO Υ Results in the pipeline :

- Final Branching Ratios for $\Upsilon(nS) \rightarrow \pi^+\pi^-\Upsilon(mS)$, and relevant angular distributions
- Searches for h_b and η_b , $\Upsilon(nS) \rightarrow \Upsilon(mS)$ + other hadrons
 - Build off success of our discovery of h_c in $\psi(2S) \rightarrow h_c \pi^0 \rightarrow \gamma \pi^0 \eta_c$, in which we found

 $M(h_c) = 3524.4 \pm 0.6 \pm 0.4 \text{ MeV}$

 $\Delta M_{hf} = < M(^{3}P_{J}) - M(h_{c}) > = +1.0 \pm 0.6 \pm 0.4 MeV$

Future run of 30M $\psi(2S)$ will bolster the h_c results

UTHER COLLECE

 $\overline{\text{DD}}$ at ψ (3770) A Preview: D_{S} Physics $\psi(nS) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773 \text{ MeV}$ Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

Outline

CESR and CESR-c CLEO and CLEO-c • CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Hadronic Transitions Physics at the $\psi(3770)$ and above • $D\overline{D}$ at $\psi(3770)$

- A Preview: *D_s* Physics
- $\psi(nS) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773$ MeV
- Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

< ロ > < 同 > < 回 > < 回 >

 $D\overline{D}$ at ψ (3770) A Preview: D_s Physics $\psi(nS) \rightarrow \ell + \ell - in$ RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

$D\overline{D}$ at ψ (3770)

- Produce DD, nothing else: clean laboratory for study of charm
- Can tag either both decays or only one, for measurements of absolute branching ratios, Decay constants, etc. σ(DD), etc.
- Rough equivalence: $100pb^{-1}$ with double tag = $500fb^{-1}$ at $\Upsilon(4S)$ with both B's reconstructed.

・ロト ・四ト ・日下・ ・日

UTHER

COLLEGE

 $D\overline{D}$ at ψ (3770) A Preview: D_s Physics $\psi(nS) \rightarrow \ell + \ell - in$ RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Datasets at ψ (3770)

CLEO-c has so far taken two runs at ψ (3770)

- Sept '03 Mar '04: $\int \mathcal{L} dt = 56 p b^{-1}$
- Sept '04 Apr '05: $\int \mathcal{L} dt = 225 p b^{-1}$

Results from two samples:

- 56*pb*⁻¹ : 360*k*DD
- the full $281pb^{-1}$: $1.8MD\overline{D}$

Further, over the next 2 years, expect to come to a total of at least $\int \mathcal{L} dt = 750 p b^{-1}$ at $\psi(3770)$

 $D\overline{D}$ at ψ (3770) A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

< ロ > < 同 > < 回 > < 回 > < 回 >

Leptonic D Decays

$$\mathbf{D}^{+} \left\{ \begin{matrix} c & W^{+} & \ell^{+} \\ \overline{d} & V \end{matrix} \right\} = \frac{G_{F}^{2}}{8\pi} |V_{cd}|^{2} f_{D}^{2} m_{\ell}^{2} M_{D}^{2} \left(1 - \frac{m_{\ell}^{2}}{M_{D}^{2}}\right)^{2} \right\}$$

From leptonic decays, we can extract the decay constant f_D .

- SM predicts $\mathbf{e}\nu:\mu\nu:\tau\nu=\mathbf{2.3}\times\mathbf{10^{-5}}:\mathbf{1}:\mathbf{2.65}$ for D
- While τ⁺ν has ~ twice the b.r., but the 2 neutrinos produced make the measurement less clean

• $e^+\nu$ is highly helicity suppressed (factor 10⁵) Best bet is $D^+ \rightarrow \mu^+\nu$: prior to ~ 2004, only a few events observed.

 $D\overline{D}$ at ψ (3770) A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

$D \rightarrow \mu \nu$ Analysis Strategy

Todd K. Pedlar

Recent QCD Results from CLEO-c

 $\overline{\text{DD}}$ at ψ (3770) A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

< ロ > < 同 > < 回 > < 回 >

$D \rightarrow \mu \nu$ Analysis Strategy

- Detect the muon together with tagged D
- We know $E_{D^+} = E_{beam}, \vec{p}_{D^+} = -\vec{p}_{D^-}.$
- Compute the missing mass squared $MM_{miss}^2 = (E_{beam} - E_{\mu})^2 - (\vec{p}_{D^-} + \vec{p}_{\mu})^2$
- at $MM_{miss}^2 = 0$ we have our signal

 $D\overline{D}$ at ψ (3770) A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

$D \rightarrow \mu \nu$ in CLEO-c Data

Todd K. Pedlar Recent QCD Results from CLEO-c

 $D\overline{D}$ at ψ (3770) A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

< ロ > < 同 > < 回 > < 回 >

$\mathcal{B}(D \rightarrow \mu \nu)$ and f_D

Backgrounds evaluated: $D^+ \rightarrow \pi^+ \pi^0(1.4)$, $K_L \pi^+(0.33)$ and $\tau^+ \nu_{\tau}(1.08)$ for a total of 2.81 events. With our 50 events in the signal region, we then obtain

$$\mathcal{B}(D^+ \rightarrow \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4}.$$

Couple this with $\tau(D^+) = 1.040 \pm 0.007 ps$ and $|V_{cd}| = 0.2238 \pm 0.0029$ (PDG) and we obtain:

$$f_D = 222.6 \pm 16.7^{+2.8}_{-3.4}$$
 MeV.

CLEO-c: PRL 95 251801 (2005)

 $D\overline{D}$ at ψ (3770) A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

Comparison to Theoretical Predictions

Lattice: PRL 95 122002 (2005)

< ロ > < 同 > < 回 > < 回 >

UTHER

COLIECE

 $D\overline{D}$ at $\psi(3770)$ **A Preview:** D_8 **Physics** $\psi(nS) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

Outline

CESR and CESR-c CLEO and CLEO-c • CLEO $\Upsilon(nS)$ Data Sets Physics at the $\psi(3770)$ and above • $D\overline{D}$ at $\psi(3770)$ A Preview: D_s Physics • $\psi(nS) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

< ロ > < 同 > < 回 > < 回 >

 $D\overline{D}$ at $\psi(3770)$ **A Preview:** D_{s} **Physics** $\psi(nS) \rightarrow \ell^{+}\ell^{-1}$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

< □ > < 同 > < 回 > < Ξ > < Ξ

D_S at CLEO-c

- f_{D_S} also calculable: $f_{D_S} = 249 \pm 3 \pm 16$ MeV. (1.1-1.3 usual ratio to f_D)
- Best measurement thus far by Babar on $230 fb^{-1}$: $f_{D_S} = 279 \pm 17 \pm 6 \pm 19$ MeV.
- Ratio to our f_D : 1.25
- The last uncertainty is due to the absolute branching ratio scale (i.e. D_S→φπ)
- We are looking to obtain both precise D_S BRs, and f_{D_S} in a similar manner to our measurements for D mesons

DD at ψ (3770) A Preview: D₈ Physics $\psi(nS) → \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

Scan of 12 points, $60pb^{-1}$ to obtain best running point for studies of D_s BR and f_{D_s}

ž

・ロト ・四ト ・ヨト ・ヨト

 $D\overline{D}$ at $\psi(3770)$ **A Preview:** $D_{\mathbf{s}}$ **Physics** $\psi(nS) \rightarrow \ell^{+}\ell^{-}$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

IUTHER

COLLEGE

D_S Cross Sections Preliminary

For production of D_S , we have chosen to run at 4170 MeV

 $D\overline{D}$ at $\psi(3770)$ **A Preview:** $D_{\mathbf{S}}$ **Physics** $\psi(nS) \rightarrow \ell^{+}\ell^{-}$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

D_S Branching Fractions Preliminary

Mode	в (%) (CLEO-c)	<i>в</i> (%) PDG
K _s K⁺	$1.28^{\tiny +0.13}_{\tiny -0.12}\pm 0.02$	1.80±0.55
K⁺K⁻π⁺	$4.54^{\text{+0.44}}_{\text{-0.42}}\pm0.09$	4.3±1.2
K⁺K⁻π⁺π⁰	$4.83^{\rm +0.49}_{\rm -0.46}\pm0.49$	-
$\pi^+\pi^+\pi^-$	$1.02^{\text{+0.11}}_{\text{-0.10}}\pm0.06$	1.00±0.28

- With only a first shot of 76pb⁻¹: already world best.
- We are currently wrapping up a full 200pb⁻¹ sample

• Ultimately we will have no less than $750pb^{-1}$ total. Hence: much more precise BR's for these and other modes, and a few percent measurement of f_{D_s} are expected.

DD at ψ (3770) A Preview: D_s Physics ψ (nS)→ t^+t^- in RR from \sqrt{s} = 3773 MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

< ロ > < 同 > < 回 > < 回 >

Outline

CESR and CESR-c CLEO and CLEO-c • CLEO $\Upsilon(nS)$ Data Sets $\Upsilon(nS)$ Hadronic Transitions Physics at the $\psi(3770)$ and above • $D\overline{D}$ at $\psi(3770)$ • A Preview: *D*_s Physics • $\psi(nS) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

DD at ψ (3770) A Preview: D_s Physics ψ (nS)→ t^+t^- in RR from \sqrt{s} = 3773 MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

< ロ > < 同 > < 回 > < 回 >

non-D $\overline{ m D}$ decays of $\psi($ 3770)

CLEO-c has made a number of other important measurements of non-DD decays of $\psi(3770)$

- $\sigma_{had}(\psi(3770))$ (c.f. $\sigma(\psi(3770) \rightarrow D\overline{D})$) and $\Gamma_{ee}(\psi(3770))$
 - By measuring σ_{tot} , and taking M and Γ_{tot} from PDG, obtain $\Gamma_{e^+e^-}(\psi(3770)) = 0.204 \pm 0.003^{+0.041}_{-0.027} keV.$
- $\mathcal{B}(\psi(3770) \rightarrow \gamma \chi_{cJ}(1P))$: argues for $\psi(3770)$ as dominantly ${}^{3}D_{1}$
- several others

In addition, while studying non-DD decays of ψ (3770), investigated

 $D\overline{D}$ at $\psi(3770)$ A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

 $\Gamma_{ee}(J/\psi), \Gamma_{tot}(J/\psi), \Gamma_{ee}(\psi(2S))/\Gamma_{ee}(J/\psi)$

While running at $\psi(3770)$, we have been able to measure the dielectron widths of $\psi(2S)$ and J/ψ through radiative return, to excellent precision:

Todd K. Pedlar Recent QCD Results from CLEO-c

 $D\overline{D}$ at $\psi(3770)$ A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

$\Gamma_{ee}(J/\psi), \Gamma_{tot}(J/\psi), \Gamma_{ee}(\psi(2S))/\Gamma_{ee}(J/\psi)$

Select $\mu^+\mu^-(\gamma)$ events with $M(\mu^+\mu^-) = M(J/\psi)$. Cross section that results is $\propto B_{\mu^+\mu^-}\Gamma_{ee}$

 $\mathcal{B}(J/\psi {
ightarrow} \mu^+ \mu^-) imes \Gamma_{e^+e^-}(J/\psi) = 0.3384 \pm 0.0058 \pm 0.0071$ keV

Divide resulting cross section by $B(J/\psi \rightarrow \mu^+ \mu^-)$:

 $\Gamma_{e^+e^-}(J/\psi) = 5.68 \pm 0.11 \pm 0.13$ keV.

Assume lepton universality, and get $\Gamma_{tot}(J/\psi)$

 $\Gamma_{tot}(J/\psi) = 95.5 \pm 2.4 \pm 2.4 \text{ keV}$

DD at ψ (3770) A Preview: D_s Physics ψ (nS)→ $\ell^+\ell^-$ in RR from \sqrt{s} = 3773 MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

For comparison: $J/\psi e^+e^-$ width measurements

Todd K. Pedlar Recent QCD Results from CLEO-c

 $D\overline{D}$ at $\psi(3770)$ A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040)$, $\psi(4160)$, Y(4260)

 $\Gamma_{ee}(J/\psi), \Gamma_{tot}(J/\psi), \Gamma_{ee}(\psi(2S))/\Gamma_{ee}(J/\psi)$

Taking the 2S to 1S ratio, we find: $\frac{\Gamma_{e^+e^{-(\psi(2S))}}}{\Gamma_{e^+e^{-}}(J/\psi)} = 0.45 \pm 0.01 \pm 0.02$ and again making the ratio most useful for LQCD: $\mathcal{R}(c\overline{c}) \equiv \frac{\Gamma_{ee}(2S)M^2(2S)}{\Gamma_{ee}(1S)M^2(1S)}$, we find $\mathcal{R} = 0.64 \pm 0.03$ Comparing to previous world average:

 $\mathcal{B}_{\mu^+\mu^-}(J/\psi) imes \Gamma_{e^+e^-}(J/\psi)$ 3.0% 3.2%

$$\Gamma_{e^+e^-(J/\psi)}$$
 3.0% 3.1%

$$\Gamma_{e^+e^-}(\psi(2S))/\Gamma_{e^+e^-}(J/\psi)$$
 3.4% 3.5%

PRD 73, 051103(R), (2006). PRL 96, 082004, (2006).

 $D\overline{D}$ at $\psi(3770)$ A Preview: D_8 Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

Outline

CESR and CESR-c CLEO and CLEO-c • CLEO $\Upsilon(nS)$ Data Sets Physics at the $\psi(3770)$ and above • $D\overline{D}$ at $\psi(3770)$ • A Preview: *D*_s Physics • $\psi(nS) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{s} = 3773$ MeV • Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$ < ロ > < 同 > < 回 > < 回 >

 $D\overline{D}$ at $\psi(3770)$ A Preview: D_8 Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

< ロ > < 同 > < 回 > < 回 >

 $D\overline{D}$ at $\psi(3770)$ A Preview: D_8 Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

IUTHER

COLIEGE

Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

Todd K. Pedlar Recent QCD Results from CLEO-c

DD at ψ (3770) A Preview: D_s Physics ψ (nS)→ $\ell^+\ell^-$ in RR from \sqrt{s} = 3773 MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

	∫ <i>Ldt</i> (pb⁻¹)	E _{CM} (MeV)
ψ(4040)	20.7	3970-4060
ψ(4160)	26.3	4120-4200
ψ (4260)	13.2	4260

Search for 16 final states with J/ψ , ψ (2S), $\chi_{cJ'} \phi$

Use $e^+e^- \rightarrow \gamma \psi(2S)$ to verify efficiency, background, luminosity.

イロト イポト イヨト イヨト

DD at ψ (3770) A Preview: D_s Physics ψ (nS)→ $t^{+}t^{-1}$ in RR from \sqrt{s} = 3773 MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

- Y(4260)→π⁺π⁻J/ψ confirmed @11σ
- First observation of Y(4260)→π⁰π⁰J/ψ (5.1σ) and first evidence for Y(4260)→K⁺K⁻J/ψ (3.7σ), plus in-progress opencharm studies should narrow the explanations.

< 口 > < 同 >

 $\mathrm{D}\overline{\mathrm{D}}$ at $\psi(3770)$ A Preview: D_{S} Physics $\psi(n\mathrm{S}) \rightarrow \ell^+ \ell^-$ in RR from $\sqrt{\mathrm{s}} = 3773~\mathrm{MeV}$ Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

UTHER

COLIECE

Summary

- Over the course of the past year or so, CLEO has produced a wide array of results that provide important checks/tuning for (L)QCD
 - Dilepton widths/branching ratios for many onia
 - Leptonic width for D (hence, f_D)
 - A host of other first observations or precise confirmations
- CLEO will continue to offer challenges to LQCD with
 - Continued searches for bb singlets
 - a total of 750 pb⁻¹ DD: improve f_D (281pb⁻¹)
 - a total of 750 pb⁻¹ $D_S \overline{D}_S$: improve $BR(D_S)$, f_{D_S} (78pb⁻¹)
 - 30M ψ(2S) lots of charmonium spectroscopy, incl. h_c, η_c
 (3Mψ(2S))

And an invitation: Session L12 (3:15, Cumberland F) - Many CLEO-c D results including semileptonic decays and absolute of branching fractions

DD at $\psi(3770)$ A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

Cited CLEO publications

ヘロト ヘ回ト ヘヨト ヘヨト

Todd K. Pedlar Recent QCD Results from CLEO-c

DD at $\psi(3770)$ A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

Observation of h_c

PRL 95, 102003 (2005)

DD at $\psi(3770)$ A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

D^{-} single tags (281 pb⁻¹): 158, 354 ± 496

Todd K. Pedlar Recent QCD Results from CLEO-c

DD at ψ (3770) A Preview: D_s Physics ψ (nS)→ $\ell^+\ell^-$ in RR from \sqrt{s} = 3773 MaV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

The Real $\mathcal{B}(\mathsf{D}_{\mathsf{S}} \rightarrow \phi \pi^+)$ The FOCUS Dalitz plot analysis has the φπ⁺ fraction of $K^+K^-\pi^+ = 0.45 \pm 0.01$ Dividing by the CLEO number for $\mathcal{B}(\mathsf{D}_{S} \rightarrow \mathsf{K}^{+}\mathsf{K}^{-}\pi^{+})$ by $\mathcal{B}(\phi \rightarrow \mathsf{K}^{+}\mathsf{K}^{-})=.491$, gives $\mathcal{B}(D_{s} \rightarrow \phi \pi^{+}) = (4.16 \pm 0.41)\%$ This is the branching ratio that is most appropriate to compare with theoretical calculations 13

DD at ψ (3770) A Preview: D_s Physics ψ (nS)→ $t^{+}t^{-1}$ in RR from \sqrt{s} = 3773 MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

Y(4260) in CLEO-c data

CLEO Data: D_s scan + 4.17GeV + 3.77GeV

Channels studied: 15 with charmonium + $\phi \pi \pi$

Cross-check: $e^+e^- \rightarrow \gamma \psi(2S) \checkmark$

Signals at 4.26GeV: $\pi^{+}\pi^{-}J/\psi$ (11 σ), $\pi^{0}\pi^{0}J/\psi$ (5.1 σ), K⁺K⁻J/ ψ (3.7 σ)

LEPP NSF Review 4/18/2006 H. Mahlke, Charmonium

21

DD at ψ (3770) A Preview: D_s Physics ψ (nS)→ $\ell^+\ell^-$ in RR from \sqrt{s} = 3773 MaV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

・ロト ・聞 ト ・ ヨト ・ ヨト

 $D\overline{D}$ at $\psi(3770)$ A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

$\sigma_{had}(\psi(3770))$ and $\Gamma_{ee}(\psi(3770))$

- Use double-D tags, simultaneously fitting for 6 charged and 3 neutral decays of D[±] and (D⁰/D⁰):
- Effectively a count D's to arrive at a $D\overline{D}$ cross section for $\psi(3770)$

$$\begin{array}{ll} \sigma({\rm e^+e^-}{\rightarrow}{\rm D}\overline{\rm D}) & (6.39\pm0.10^{+0.17}_{-0.08}){\rm nb} \\ \sigma({\rm e^+e^-}{\rightarrow}{\rm D^0}\overline{\rm D}^0) & (3.60\pm0.07^{+0.07}_{-0.05}){\rm nb} \\ \sigma({\rm e^+e^-}{\rightarrow}{\rm D^+D^-}) & (2.79\pm0.07^{+0.10}_{-0.04}){\rm nb} \\ {\rm Charged to Neutral Ratio:} \end{array}$$

$$\frac{\sigma(e^+e^- \rightarrow D^+D^-}{\sigma(e^+e^- \rightarrow D^0\overline{D}^0)} = 0.776 \pm 0.024^{+0.014}_{-0.006}.$$

PRL 95, 121801 (2005).

< ロ > < 同 > < 回 > < 回 >

 $D\overline{D}$ at $\psi(3770)$ A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: ψ (4040), ψ (4160), Y(4260)

> UTHER COLLECE

< ≣⇒

$\sigma_{had}(\psi(3770))$ and $\Gamma_{ee}(\psi(3770))$

We have also studied the number of hadronic events, N_{had} in these data (selection essentially counts $N_{tr} \ge 3$ and $E_{vis}/\sqrt{s} > 0.3$.

With continuum subtraction from data taken below $\psi(2S)$ and subtraction of known RR to $\psi(2S)$ and J/ψ , we find:

$$\sigma_{\it had}(\psi(3770)) = 6.38 \pm 0.08^{+0.41}_{-0.30}~{\it nb}.$$

We then have

$$\sigma_{\text{nonD}\overline{D}} = \sigma_{\text{had}}(\psi(3770)) - \sigma_{\text{D}\overline{D}}(\psi(3770)) = -0.01 \pm 0.08^{+0.41}_{-0.30} \text{ nb}.$$

The observed non-DD decays are consistent with this small difference. Then, taking the observed total cross section, plus $M(\psi(3770))$ and $\Gamma(\psi(3770))$ from PDG, we obtain:

$$\Gamma_{e^+e^-}(\psi(3770)) = 0.204 \pm 0.0.003^{+0.041}_{-0.027} \text{keV}.$$

DD at $\psi(3770)$ A Preview: D_s Physics $\psi(nS) \rightarrow \ell^+\ell^-$ in RR from $\sqrt{s} = 3773$ MeV Higher Charmonia: $\psi(4040), \psi(4160), Y(4260)$

Dilepton Decay Summary from CLEOIII/-c

CLEO has ammassed a large number of measurements of the important dilepton decays of both bottomonium and charmonium

