Recent Results in Bottomonium Spectroscopy VIII International Workshop on Heavy Quarks and Leptons

Todd K. Pedlar

Luther College, Decorah, IA, for the CLEO Collaboration

Outline

- B-factory Contributions in $\pi^+\pi^-$ Transitions
- All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

ILIMH

A wee bit of history

Roughly 30 years ago, at Fermilab (E288) a hint of something odd near 9.5 GeV was seen in online-reconstruction of

< 回 > < 三 > < 三

For a very interesting history of the discovery of the Υ :

http://history.fnal.gov/jyoh_docs/e288_internal_notes.html

Introduction:

The Renaissance: CLEO III The Enlightenment: A New Host of Hadronic Transitions Conclusions and Future Prospects

A wee bit of history

Subsequent History

- Over the course of the next 20 years, spectroscopy of the system revealed a rich set of bound states
- Contributions from CLEO, CUSB, Crystal Ball, Doris, ARGUS and others

IUTHER

Motivations

Among the many things motivating our further study of bottomonium are:

• Test Lattice QCD - masses, hyperfine splittings, $\ell\ell$ widths, other rates

A wee bit of history

- Develop QCD and potential models: spin-orbit coupling, color octet/singlet
- Develop decay models (particularly hadronic transitions)
- Compare to charmonium (particularly radiative decays and *ll* widths)

We now undertake a survey of results obtained over the past few years

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

The Renaissance

- During the first 20 years of bottomonium spectroscopy, much of the spectroscopic map was laid out
- Subsequently (as CLEO-III) CLEO has ushered in a new period in the study of the ↑ system
- Recently, the B-factory experiments have joined the fun, reporting new hadronic transitions from ↑(4S) to bottomonium daughters (and BELLE has taken an engineering run at ↑(3S))

Introduction: The Renaissance: CLEO III t: A New Host of Hadronic Transitions

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

The Enlightenment: A New Host of Hadronic Transitions Conclusions and Future Prospects

CLEO $\Upsilon(nS)$ Data Sets

(CLEO II)

Recent CLEO III bottomonium spectroscopy results

- E1 Transitions (including $\Upsilon(3S) \rightarrow \gamma \chi_{b0}(1P)$) PRL 94, 032001 (2004)
- 1D Discovery (first CLEOIII 'confrontation' with LQCD) PRD 70, 032001 (2004)
- Discovery of $\chi_{b1,2}(2P) \rightarrow \omega \Upsilon(1S)$ PRL 92, 222002 (2004)
- Discovery of $\chi_b(2P) \rightarrow \pi^+ \pi^- \chi_b(1P)$ PRD 73, 012003 (2006)
- New Studies of ↑(nS)→ℓℓ Widths and BRs PRL 94, 012001 (2005), PRL 96, 092003 (2006), hep-ex/0607019 (sub. to PRL)
- New Measurement of $B(\Upsilon(1S) \rightarrow \eta' X)$, hep-ex/0610032, sub. to PRD
- Studies of ↑(1S) Radiative Decays and Direct Photon Spectra, PRD 73, 032001 (2006), hep-ex/0512003, sub. to PRD
- B_s Studies at ↑(5S), PRL 95, 261801 (2005), PRL 96 022002 (2006), PRL 96 152001 (2006), PRD 74, 012003 (2006)

IUTHER

COLIECE

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

$\Upsilon(nS)$ Leptonic Decays

- The leptonic width of a quarkonium state is one of the basic parameters calculable in LQCD.
- At CLEO, we have recently measured leptonic widths or branching ratios for all three Υ(nS) states that lie below open-bottom threshold to all three lepton flavors (e⁺e⁻, μ⁺μ⁻, τ⁺τ⁻).

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

$\mu^+\mu^-$ Branching Fractions: PRL 94 012001(2005)

Todd K. Pedlar

- In 2005, we published new measurements of B(Y(nS)→µ⁺µ⁻)
- Based on 1.1 1.2fb⁻¹ at each ↑(nS)
- Open histograms: all on-resonance data satisfying analysis cuts
- Shaded: scaled continuum data
- Points with errors: difference

★ ∃ ► ★ ∃

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

$\mu^+\mu^-$ Branching Fractions: PRL 94 012001(2005)

PDG2004

伺 ト イヨ ト イヨト

$$\begin{split} \mathcal{B}_{\mu\mu}(\Upsilon(1\mathrm{S})) &= (2.49 \pm 0.02 \pm 0.07)\% \quad c.f. \ 2.49 \pm 0.06\% \\ \mathcal{B}_{\mu\mu}(\Upsilon(2\mathrm{S})) &= (2.03 \pm 0.03 \pm 0.08)\% \quad c.f. \ 1.31 \pm 0.21\% \\ \mathcal{B}_{\mu\mu}(\Upsilon(3\mathrm{S})) &= (2.39 \pm 0.07 \pm 0.10)\% \quad c.f. \ 1.81 \pm 0.17\% \end{split}$$

ъ

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

e⁺e⁻ Partial Widths

More recently, we have reported measurements of the Γ_{ee} for $\Upsilon(nS)$ with significant improvement in precision (c.f Relative Uncertainty on PDG 2004 Averages):

 $\Upsilon(1S)$: 2.2% $\Upsilon(2S)$: 4.2% $\Upsilon(3S)$: 9.4%

Method:

- Observe Hadronic Cross Section as function of \sqrt{s}
- Lineshape scanned by varying E_{beam}
- Area under lineshape $\propto \Gamma_{ee}\Gamma_{had}/\Gamma_{tot}$.

Approx 1.25 fb^{-1} invested in the 3S, 2S and 1S scans

▲ 祠 ▶ ▲ 三 ▶

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

e⁺e⁻ Partial Widths: PRL 96 092003(2006)

Use Lepton universality: $\Gamma_{ee} = (\Gamma_{ee}\Gamma_{had}/\Gamma_{tot})/(1 - 3B_{\mu\mu})$ Stat err: $\Upsilon(1S, 2S, 3S) : 0.3\%, 0.7\%, 1.0\%$. Chief Syst. Err: $\mathcal{L} : 1.3\%, \epsilon_{had} : 0.5\%$.

< // ▶ < 三 ▶

-∢ ≣ →

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

e⁺e⁻ Partial Widths: PRL 96 092003(2006)

$\Gamma_{ee}\Gamma_{had}/\Gamma_{tot}(1S)$	$(1.252 \pm 0.005 \pm 0.019) \text{ keV}$	-
$\Gamma_{ee}\Gamma_{had}/\Gamma_{tot}(2S)$	$(0.581 \pm 0.006 \pm 0.009) \text{ keV}$	%
$\Gamma_{ee}\Gamma_{had}/\Gamma_{tot}(3S)$	$(0.413 \pm 0.004 \pm 0.006) \text{ keV}$	
$\Gamma_{ee}(1S)$	$(1.354 \pm 0.005 \pm 0.020) \text{ keV}$	1.5
$\Gamma_{ee}(2S)$	$(0.619 \pm 0.007 \pm 0.009) \text{ keV}$	1.9
$\Gamma_{ee}(3S)$	$(0.446 \pm 0.004 \pm 0.007) \text{ keV}$	1.8
$\Gamma_{ee}(2S)/\Gamma_{ee}(1S)$	$(0.457 \pm 0.006 \pm 0.003)$	1.5
$\Gamma_{ee}(3S)/\Gamma_{ee}(1S)$	$(0.329 \pm 0.004 \pm 0.002)$	1.3
$\Gamma_{ee}(3S)/\Gamma_{ee}(2S)$	$(0.720 \pm 0.011 \pm 0.006)$	1.7

LUTHER

・ロト ・ 一下・ ・ 日 ・ ・ 日

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

Comparison to Previous Measurements of Γ_{ee}

Todd K. Pedlar Recent Results in Bottomonium Spectroscopy

15/45

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

Comparison to unquenched LQCD

The best object for comparison is: $\frac{\Gamma_{ee}(\Upsilon(2S))M^{2}(\Upsilon(2S))}{\Gamma_{ee}(\Upsilon(1S))M^{2}(\Upsilon(1S))}$ CLEO-c: 0.514 ± 0.007 PRL 96, 092003 (2006). LQCD: 0.48 ± 0.05 PRD 72, 094507 (2005).

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

$\Upsilon(nS) \rightarrow \tau^+ \tau^-$: hep-ex/0607019 (sub to PRL)

- We have recently measured $\tau^+\tau^-$ decays at all 3 lowest $\Upsilon(\mathrm{nS})$ resonances
- Previously: $\mathcal{B}(\Upsilon(1S) \rightarrow \tau^+ \tau^-)$ known to 10%, $\Upsilon(2S) \rightarrow \tau^+ \tau^-$ "seen", $\Upsilon(3S) \rightarrow \tau^+ \tau^-$ unknown.
- Use 1-prong τ decays (τ→hν, τ→ℓνν), about 75% of the total.
- Ratio to $\mu^+\mu^-$ reported:

$$\mathcal{R} \equiv \frac{\mathcal{B}(\Upsilon(\mathrm{nS}) \rightarrow \tau^+ \tau^-)}{\mathcal{B}(\Upsilon(\mathrm{nS}) \rightarrow \mu^+ \mu^-)}$$

< ロ > < 同 > < 回 > < 回 >

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

$\Upsilon(1S) \rightarrow \tau^+ \tau^-$: hep-ex/0607019 (sub to PRL)

Todd K. Pedlar Recent Results in Bottomonium Spectroscopy 18/

LUTHER

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

$\Upsilon(1S) \rightarrow \tau^+ \tau^-$: hep-ex/0607019 (sub to PRL)

New CLEO Data at $\Upsilon(nS)$ $\Upsilon(nS)$ Leptonic Widths

$R \equiv B(\tau \tau)/B(\mu \mu)$: hep-ex/0607019 (sub to PRL)

$$R(\Upsilon(1S))$$
: $1.02 \pm 0.02 \pm 0.05$ $R(\Upsilon(2S))$: $1.04 \pm 0.04 \pm 0.05$ $R(\Upsilon(3S))$: $1.07 \pm 0.08 \pm 0.05$

LUTHER

ž

 $\begin{array}{l} \textbf{CLEO: New Hadronic Transitions}\\ \textbf{B-factory Contributions in $\pi^+\pi^-$ Transitions}\\ \textbf{All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions} \end{array}$

$\Upsilon(nS)$ Hadronic Transitions

- Low q² processes
- Expt. serves different role than in leptonic case

э

< ∃ >

< □ > < 同

1

1

New Transitions: $\chi_b(2P) \rightarrow \omega \Upsilon(1S), \pi^+ \pi^- \chi_b(1P)$

With CLEO-III data, studies of previously unknown hadronic transitions made possible.

• Discovery of $(\chi_{b1,2}(2P) \rightarrow \omega \Upsilon(1S))$ PRL 92, 222002 (2004)

$$\mathsf{B}(\chi_{b2}(2P) \rightarrow \omega \Upsilon(1S)) = 1.6 \pm 0.3 \pm 0.2\%$$

$$\mathsf{B}(\chi_{b1}(2P) \rightarrow \omega \Upsilon(1S)) = 1.1 \pm 0.3 \pm 0.1\%$$

Ratio of these consistent with Gottfried (PRL 40, 598 (1978)) and Voloshin (Mod. Phys. Lett A18, 1067 (2003))

• Discovery of $\chi_b(2P) \rightarrow \pi^+ \pi^- \chi_b(1P)$ PRD 73, 012003 (2006)

$$\Gamma(\chi_b(2P) {
ightarrow} \pi^+ \pi^- \chi_b(1P)) = 0.83 \pm 0.22 \pm 0.08 \pm 0.19$$
 keV

Consistent with Kuang/Yan (PRD 24, 2874 (1981)), which predicted \sim 0.4 keV)

 $\begin{array}{l} \textbf{CLEO: New Hadronic Transitions}\\ \textbf{B-factory Contributions in $\pi^+\pi^-$ Transitions}\\ \textbf{All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions} \end{array}$

New Developments in $\Upsilon(nS) \pi^+\pi^-$ Transitions

Some new developments of late in $\pi^+\pi^-$ transitions among $\Upsilon(nS)$ states:

- CLEO: finalizing high-statistics studies of $\pi^+\pi^-$ transitions $\Upsilon(nS) \rightarrow \Upsilon(mS)\pi\pi$. Plots shown today are preliminary
- Belle: Observed $\Upsilon(4S) \rightarrow \Upsilon(1S) \pi^+ \pi^-$
- BaBar: Observed $\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^+\pi^-$ and $\Upsilon(4S) \rightarrow \Upsilon(2S)\pi^+\pi^-$

and an interesting picture emerges...

・ロト ・ 一下・ ・ 日 ・ ・ 日

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

Belle: $\Upsilon(4S) \rightarrow \Upsilon(1S) \pi^+ \pi^-$ (hep-ex/0512034)

At EPS05, BELLE reported a study of $\pi^+\pi^-$ transitions at $\Upsilon(4S)$

Luminosity On 4S (fb^{-1}) 398Number of 4S $(x10^6)$ 386Luminosity Off 4S (fb^{-1}) 40

• Require $\mu^+\mu^-$ candidate, $M_{\mu^+\mu^-}$ consistent w/ $M(\Upsilon(1S)) = 9.460 \text{ GeV}$

• Also a $\pi^+\pi^-$ candidate, w/ $\Delta M \equiv M_{\pi^+\pi^-\mu^+\mu^-} - M_{\mu^+\mu^-}$

- Remove bkg from $e^+e^- \rightarrow \gamma \mu^+ \mu^-$, w/ $\gamma \rightarrow e^+e^-$ in detector by cut on $\theta_{\pi^+\pi^-}$
- Fit ΔM spectrum in region near $M(\Upsilon(4S)) M(\Upsilon(1S))$

< ロ > < 同 > < 回 > < 回 >

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

Belle: ΔM Spectra On and Off 4S (hep-ex/0512034)

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

Belle: $B(\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^+\pi^-)$ (hep-ex/0512034)

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

Bottomonia at BaBar: PRL 96 232001

BaBar has reported a study of $\Upsilon(4S) \rightarrow (\Upsilon(2S, 1S))\pi^+\pi^-$. $\Upsilon(1S)$ and $\Upsilon(2S)$ candidates are identified via $\mu^+\mu^-$ decay. Daughter decays to e^+e^- seen, but not as clean (or as significant)

Luminosity On 4S (fb^{-1}) 211Number of 4S $(x10^6)$ 230Luminosity Off 4S (fb^{-1}) 22

- Select events with 4 tracks w/in fiducial volume, constrained to common vertex
- Two tracks consistent with μ, two tracks NOT consistent with e⁺e⁻; needed to reject μ⁺μ⁻γ events in which γ→e⁺e⁻ in detector.

(日)

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

LUTHER

COLLEGE

BaBar: ΔM vs. $M(\mu^+\mu^-)$ PRL 96 232001

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

Results of fits to ΔM spectra PRL 96 232001

Highly significant signals (10.0 σ and 7.3 σ), for 1S and 2S respectively).

< E

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

Results of fits to ΔM spectra PRL 96 232001

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

Yields from fits to ΔM spectra PRL 96 232001

Transition	N _{sig}	signif.	ϵ (%)
4S→1S	167 ± 19	10.0 σ	$\textbf{32.5}\pm\textbf{3.9}$
4S→2S	97 ± 15	7.3σ	$\textbf{24.9} \pm \textbf{3.0}$

From the above, BaBar reports:

$$B(\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^{+}\pi^{-}) \times B_{\mu^{+}\mu^{-}}(\Upsilon(1S)) = (2.23 \pm 0.25 \pm 0.27) \times 10^{-6}$$

 $B(\Upsilon(4S) \to \Upsilon(2S)\pi^{+}\pi^{-}) \times B_{\mu^{+}\mu^{-}}(\Upsilon(2S)) = (1.69 \pm 0.26 \pm 0.20) \times 10^{-6}$

< □ > < 同 > < 回 > .

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

BaBar Results: PRL 96 232001

Using world average values for $B(\Upsilon(nS) \rightarrow \mu^+ \mu^-)$, and a recent measurement (BaBar) of $\Gamma_{tot}(\Upsilon(4S))$ BaBar reports:

$$B(\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^{+}\pi^{-}) = (0.90 \pm 0.15) \times 10^{-4}$$

$$\Gamma(\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^{+}\pi^{-}) = 1.8 \pm 0.4 \text{ keV}$$

$$B(\Upsilon(4S) \rightarrow \Upsilon(2S)\pi^{+}\pi^{-}) = (1.29 \pm 0.32) \times 10^{-4}$$

$$\Gamma(\Upsilon(4S) \rightarrow \Upsilon(2S)\pi^{+}\pi^{-}) = 2.7 \pm 0.8 \text{ keV}$$

< ロ > < 同 > < 三 >

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

BaBar Results: PRL 96 232001

Using world average values for $B(\Upsilon(nS) \rightarrow \mu^+ \mu^-)$, and a recent measurement (BaBar) of $\Gamma_{tot}(\Upsilon(4S))$ BaBar reports:

$$B(\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^{+}\pi^{-}) = (0.90 \pm 0.15) \times 10^{-4}$$

$$\Gamma(\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^{+}\pi^{-}) = 1.8 \pm 0.4 \text{ keV}$$

With the more recent CLEO result of $B_{\mu^+\mu^-}(\Upsilon(2S))$:

$$B(\Upsilon(4S) \rightarrow \Upsilon(2S)\pi^{+}\pi^{-}) = (0.83 \pm 0.16) \times 10^{-4}$$

 $\Gamma(\Upsilon(4S) \rightarrow \Upsilon(2S)\pi^+\pi^-) = 1.7 \pm 0.5 \text{ keV}$

c.f. Belle's

 $\Gamma(\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^+\pi^-) = 1.1 \pm 0.2 \pm 0.4 \text{ keV}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

The question of $\pi^+\pi^-$ Invariant Mass

- The subject of π⁺π⁻ invariant mass distributions for transitions among bottomonia has a long history of interest.
- $\Upsilon(3S) \rightarrow \Upsilon(2S)\pi^+\pi^-$, $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi^+\pi^-$ well fit by an S-wave model (Kuang/Yan PRD 24, 2874 (1981)), but NOT $\Upsilon(3S) \rightarrow \Upsilon(1S)\pi^+\pi^-$.
- A better fit to Υ(3S)→Υ(1S)π⁺π⁻ is found with Moxhay's model (PRD 39, 3497 (1989)) and others (coupled-channel effects, etc.)
- New information on 4S decays from BaBar and Belle: a very interesting picture indeed.

< ロ > < 同 > < 回 > < 回 >

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

The Question of $\pi\pi$ Invariant Mass

Todd K. Pedlar

Recent Results in Bottomonium Spectroscopy 35/45

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

CLEO: $\pi^+\pi^-$ Invariant Mass PRELIMINARY

Data shown are from $\Upsilon(2S)$ and $\Upsilon(2S)$, wherein a $\pi^+\pi^-$ candidate recoils against $\Upsilon(1S)$.

- Open circles: $\Upsilon(1S)$ is observed via $\ell\ell$.
- Closed circles: $\Upsilon(1S)$ is unobserved.

< 回 > < 回 > < 回 >

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

Belle: $\pi^+\pi^-$ Invariant Mass hep-ex/0512034

$M(\pi^+\pi^-)$ for selected ΔM regions near ISR peaks.

• □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

BABAR: $\pi^+\pi^-$ Invariant Mass PRL 96 232001

$M(\pi^+\pi^-)$ for selected ΔM regions near 4S peaks

< □ > < 行!

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

BABAR/Belle: $\pi^+\pi^-$ Invariant Mass

For comparison: Note the Yan-type mass distribution of $\Upsilon(4S){\rightarrow}\Upsilon(1S)$

All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

BABAR/CLEO: $\pi^+\pi^-$ Invariant Mass

For comparison: Note the Moxhay-type mass distribution of $\Upsilon(nS) \rightarrow \Upsilon([n-2]S)$

< 口 > < 同 >

CLEO: New Hadronic Transitions B-factory Contributions in $\pi^+\pi^-$ Transitions All Together Now: $\pi^+\pi^-$ Invariant Mass Distributions

> LUTHER COLLECE

An aside: $\pi^+\pi^-$ Invariant Mass in $c\overline{c}$

compare with

Conclusions and Future Prospects

- 30 years after the discovery of bottomonium, a new era in the spectroscopy of the system has been opened
- New states (1D) and new transitions ($\chi_b(2P) \rightarrow \omega \Upsilon(1S)$, $\chi_b(2P) \rightarrow \pi^+ \pi^- \chi_b(1P)$) have been discovered
- New, very precise measurements of all leptonic decay modes have beem made
- BELLE and BaBar have presented some tantalizing new results involving $\pi^+\pi^-$ transitions from $\Upsilon(4S)$
- Stay tuned for several upcoming results from CLEO

RESERVE SLIDES

Todd K. Pedlar Recent Results in Bottomonium Spectroscopy 43/45

・ロト ・ 四 ト ・ 田 ト ・ 田

$\Upsilon(nS)$ Hadronic Transitions

$\Upsilon(nS)$ Hadronic Transitions

