

Charm Results from CLEO-c

Karl M. Ecklund Cornell University XXth Rencontres de Physique de la Vallée d'Aosta, La Thuile March 9, 2006

Context for CLEO-c

CPV & Flavor physics:

- Overconstrain V_{CKM}
- Inconsistency \rightarrow new physics
- Interpretation limited by strong interaction effects

- Sin 2β is clean
- $\cdot |V_{ub}|$ is not
- B mixing is not

Hadronic uncertainties confound the extraction of weak physics •Non-perturbative QCD •Perturbative QCD (on better ground)

Driving Idea behind CLEO-c weak decay program

 Measurements in Charm decays can validate QCD corrections needed to extract Weak physics from observables

9 Mar 06

$|V_{ub}|$ from semileptonic B decay

If quarks were like muons:

$$\Gamma(b \to ue \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{ub}|^2$$

- Rate goes like $|V_{ub}|^2$ But quarks always in hadrons
- QCD form factor f₊(q²) needed to extract weak decay physics

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$

UT Constraint from $|V_{ub}|$

 $|V_{ub}|$ from $B \rightarrow \pi \ell \nu$:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$

Form factor $f(q^2)$:

- Hard to calculate
- Limits $|V_{ub}|$ precision
- Computed in Lattice QCD
- Heavy quark symmetry relates $D \rightarrow \pi \ell v$ to $B \rightarrow \pi \ell v$
- A precise measurement of $D \rightarrow \pi \ell \nu$ can calibrate LQCD and allow a precise extraction of $|V_{ub}|$ from $B \rightarrow \pi \ell \nu$
- Absolute rate and shape is a stringent test of theory

$|V_{td}|$ from B⁰-B⁰ mixing

- Mixing rate depends on |V_{td}|²
- QCD correction here is partly decay constant f_B
 - probability of wave function overlap ψ(r=0)
- Same for meson decay
- Hard to calculate in low energy QCD
 - Lattice QCD to ~15%
- Can measure annihilation decay (in principle)

UT Constraint from B mixing

- Lattice QCD predicts decay constants $f_D \& f_B$
- If precise measurements of $f_{\rm D}$ and $f_{\rm Ds}$ exist, then our confidence in the non-perturbative QCD calculations needed to make constraints on the UT is increased.
- CLEO-c can help here by measuring $f_{D(s)}$ from $D_{(s)} \rightarrow \mu \nu$
 - direct measurement of $B_{(s)} \rightarrow \mu\nu$ is much harder!

9 Mar 06

Status of CKM Matrix

Current V_{CKM} From direct Measurements -no unitarity imposed

CLEO-c will redefine 2nd generation elements And enable improvements in 3rd generation

Charm Threshold Region

 D^+D^- , $D^0\overline{D}^0$ at ψ**(3770)**

 $D_s^+ D_s^- at$ $\sqrt{s}=4.14 \text{ GeV}$

Will also run on ψ' many QCD topics, charmonium spectroscopy

8

CLEO-c Run Plan

Region I: ψ(3770) - 1000 pb⁻¹ (ψ(3770) →DD) 10 million DD events, 2 million *tagged* D decays (100 times MARK III)

Region II: √s=4170 MeV - 500 pb⁻¹
0.5 million D_sD_s^{*} events, 0.1 million *tagged* D_s decays (150 times MARK III, 40 times BES)

Region III: ψ'(3686) 30 million ψ' decays (10 times current CLEO-c sample ~ BES)

So far: Oct'03—Mar'04 60 pb⁻¹ ψ (3770), 3 Million ψ ' Sep'04—Apr'05 220 pb⁻¹ ψ (3770) Sep'05—Jan'06 60 pb⁻¹ D_s scan; 60 pb⁻¹ at 4170 Expecting: Mar'06—Mar'08 5 more runs ≈250 pb⁻¹ each

CLEO-c Detector

State of Art Detector:

- Drift Chamber Tracking - $\sigma_p/p = 0.6\% @ 1 \text{ GeV/c}$
- Super Cond. Solenoid
- RICH Particle ID
- CsI EM Calorimetry
 - $\sigma_{\rm E}/{\rm E} = 2.2\% @ 1 \,{\rm GeV}$
 - $\sigma_{\rm E}$ / E = 5% @ 100 MeV
- 93% of solid angle
- Only small changes from CLEO III
 - B field $1.5 \rightarrow 1 \text{ T}$
 - Silicon \rightarrow drift chamber

9 Mar 06

New Inner Detector

- Continuous tracking volume
- Low mass (σ_p is MS limited)
- Nothing to vertex at charm threshold!

- Replaced Silicon Vertex Detector in May 2003
- 6 stereo layers:
 - r=5.3 cm 10.5 cm
 - 12-15° stereo angle
 - |cos θ| < 0.93
- 300, 10 mm cells
- 100 μ m hit resolution
- 1% X_0 inner Al tube .8mm
- Helium-Propane (60:40)
- 20 μ m Au-W sense wires
- + 110 μm Au-Al field wires
- Outer Al-Mylar skin

9 Mar 06

Hadronic D Decays

$\psi(3770) \rightarrow D \overline{D}$

- At threshold no additional particles are produced
- Fully reconstruct one D in the event, e.g. $D^0 \rightarrow K^- \pi^+$

9 Mar 06

Double Tag Events

9 Mar 06

6	LUNIVA.	
A	国人	ł
E		ļ
×	ETO NO	

$$N_i = N_{D\overline{D}} B_i \varepsilon_i$$

 $N_{ii} = N_{D\overline{D}} B_i B_j \varepsilon_{ij}$

 $\mathcal{E}_{ii} \approx \mathcal{E}_i \mathcal{E}_i$

	$B_{i} = \frac{N_{ij}}{N_{j}} \frac{\varepsilon_{j}}{\varepsilon_{ij}}$		$N_{D\overline{D}}$] _ = -	$\frac{N_i N_j}{N_{ij}}$	$\frac{\mathcal{E}_{ij}}{\mathcal{E}_i \mathcal{E}_j}$
e	Fitted \mathcal{B} (%) PD)G I	B (%)	$\Delta_{\rm FSR}$	=	
	$3.91 \pm 0.08 \pm 0.09$ 3.8	$80 \pm$	0.09	-2.0%	6	
	$149 \pm 0.3 \pm 0.5$ 13	30-	+08	-0.89	~ ~ ~	

D Decay Mod $\overline{K^-\pi^+}$ $K^{-}\pi^{+}\pi^{0}$ $K^{-}\pi^{+}\pi^{+}\pi^{-}$ $8.3 \pm 0.2 \pm 0.3$ -1.7% 7.46 ± 0.31 $K^-\pi^+\pi^+$ -2.2% $9.5 \pm 0.2 \pm 0.3$ 9.2 ± 0.6 $K^{-}\pi^{+}\pi^{+}\pi^{0}$ $6.0 \pm 0.2 \pm 0.2$ 6.5 ± 1.1 -0.6% $K_{S}^{0}\pi^{+}$ $1.55 \pm 0.05 \pm 0.06$ 1.41 ± 0.10 -1.8% $K_{S}^{0}\pi^{+}\pi^{0}$ $7.2 \pm 0.2 \pm 0.4$ 4.9 ± 1.5 -0.8% $K^{0}_{S}\pi^{+}\pi^{+}\pi^{-}$ $3.2 \pm 0.1 \pm 0.2$ 3.6 ± 0.5 -1.4% $K^+K^-\pi^+$ $0.97 \pm 0.04 \pm 0.04$ 0.89 ± 0.08 -0.9% $D\bar{D}$ Yield Fitted Value $\Delta_{\rm FSR}$ $(2.01 \pm 0.04 \pm 0.02) \times 10^5$ -0.2% $N_{D^0\bar{D}^0}$ $(1.56 \pm 0.04 \pm 0.01) \times 10^5$ -0.2% N_{D+D-}

 \mathcal{M}

9 modes, simultaneous χ^2 fit including correlations on N, ε to extract 9 B_i & N(DD)

ε_i=16—65%

Double

tagged D

With 55.8 pb⁻¹, $\sigma(D^0\overline{D^0}) = (3.60 \pm 0.07 \pm 0.07) \text{ nb}$ σ(D⁺D⁻) = (2.79 ± 0.07 ± 0.10) nb $\sigma(D \overline{D}) = (6.39 \pm 0.10 \pm 0.17) \text{ nb}$

 σ (DD) =(5.0 ± 0.5)nb (Mark III)

PRL 95 121801 (2005)

K M Ecklund - CLEO-c Results - La Thuile

N N

Comparison with PDG 2004

- Measurements and errors normalized to Particle Data Group World Average
- No FSR corrections in PDG measurements
- Our measurements are correlated (statistics and efficiency systematics)

Other *direct* meas.

Leptonic D Decay

- Measure rate to extract f_D
- Useful to calibrate
 V_{td} from B⁰ mixing
- CLEO goal is 4%
- Pre-2004, only a few events seen

$$\Gamma(D \to \mu \nu) = \frac{G_F^2}{8\pi} |V_{cd}|^2 (f_D^2 m_\mu^2 M_D^2 \left(1 - \frac{m_\mu^2}{M_D^2}\right)^2$$

decay constant

measures overlap of quark wave functions

9 Mar 06

Analysis Strategy

(Missing Mass)²

$$\vec{p}_D = \vec{p}_\mu + \vec{p}_\nu = -\vec{p}_{D_{\text{tag}}}$$
$$E_D = E_\mu + E_\nu = E_{\text{beam}}$$

$$MM^{2} \equiv E_{v}^{2} - p_{v}^{2}$$
$$MM^{2} = (E_{\text{beam}} - E_{\mu})^{2} - (-\vec{p}_{D_{\text{tag}}} - \vec{p}_{\mu})^{2}$$

Signal will peak at $M_v^2=0$ Calibration with $D^- \rightarrow K_s \pi^ \sigma=0.0223\pm0.0009 \ GeV^2$

Use tagged $D^- \rightarrow K_s \pi^$ sample to check data and MC consistency

Here we ignore the $K_{\rm S}$ to compute MM^2

MM² Distribution

Monte Carlo Simulation of 1700 pb⁻¹, 6 × data

Data: 50 events in the signal region in 281 pb⁻¹

Measuring f_{D+}

Backgrounds								
Mode	B (%)	# Events						
π*π0	0.13±0.02	1.40±0.18±0.22						
K ⁰ π ⁺	2.77±0.18	0.33±0.19±0.02						
$\overline{\tau^+\nu \ (\tau \rightarrow \pi^+\nu)}$	2.65*ℬ(D⁺→μ⁺ν)	1.08±0.15±0.16						
Other D⁺, D°		<0.4, <0.4 @ 90% c.l.						
Continuum		<1.2 @ 90% c.l.						
Total Background		2.81±0.30 ^{+0.84} -0.27						

$$\mathcal{B}\left(\mathcal{D}^{+} \rightarrow \mu^{+}\nu\right) = \frac{\mathcal{N}_{sig}}{\varepsilon^{*} \mathcal{N}_{tag}}$$

$$\mathcal{B}=\left(4.40\pm0.66\pm0.09}{f_{D}}\right)\times10^{-4}$$

$$f_{D}=\left(222.6\pm16.7\pm2.8\right) \text{MeV}$$

$$\mathcal{B}=\left(222.6\pm16.7\pm2.8\right) \text{MeV}$$

$$\mathcal{B}=\left(222.6\pm16.7\pm2.8\right) \text{MeV}$$

$$\mathcal{B}=\left(222.6\pm16.7\pm2.8\right) \text{MeV}$$

9 Mar 06

K M Ecklund - CLEO-c Results - La Thuile

on B:

Measurements vs. Predictions

CLEO-c 281 pb⁻¹ PRL 95, 251801 (2005)

Unquenched Lattice QCD 201±3±17 MeV PRL 95, 122002 (2005)

Both Lattice QCD and experiment will improve

Semileptonic D Decays

Results from 57 pb⁻¹

Very clean π⁻e⁺v 109±11 evts

First time p⁻e⁺v seen 30±6 evts

Cabibbo Favored: Vcs9 Mar 06K M Ecklu

K M Ecklund - CLEO-c Results - La Thuile

Cabibbo Suppressed: V_{cd}

Semileptonic Results

PRL 95 181801 (2005) D⁺ PRL 95 181802 (2005) D⁰

- Even with first data set (57 pb⁻¹) making most competitive results
- With additional data will study q² dependence to extract form factors
 - terrific resolution
 0.01-0.025 GeV²
 - FF analysis in progress:
 - Kev
 - π e v
 - **Κ**π e ν

Inclusive semileptonic D Decays

Lab momentum spectrum (no FSR correction) Important for B decays:

- charm feeddown
- test of quark-hardon duality
 9 Mar 06
 K M Ecklund

preliminary

Tagged sample: only "golden modes" $D^0 \rightarrow K^- \pi^+ (47.4k)$ and $D^+ \rightarrow K^- \pi^+ \pi^+ (73.7k)$ Measure electrons inclusively Correct for fakes and efficiency using data Subtract small backgrounds Extrapolate below p_e cut (~8%) $\mathcal{B}(D^+ \rightarrow Xe^+ v) = (16.13 \pm 0.20 \pm 0.30)\%$ $\mathcal{B}(D^0 \rightarrow Xe^+ v) = (6.46 \pm 0.17 \pm 0.12)\%$ Sum of exclusive modes nearly saturates inclusive BF: $\mathcal{B}(D^+ \rightarrow Xe^+ v) = (15.1 \pm 0.5 \pm 0.5)\%$ $B(D^0 \rightarrow Xe^+v) = (6.1 \pm 0.2 \pm 0.2)\%$ Isospin test:

 $\frac{\Gamma(D^+ \to Xe^+\nu)}{\Gamma(D^0 \to Xe^+\nu)} = 0.984 \pm 0.028 \pm 0.015$

Conclusion/Summary

- Results from first charm threshold running
 - semileptonic & hadronic branching fractions (60 pb⁻¹)
 - leptonic decay and f_D to 7.5% (280 pb⁻¹)
- Outlook
 - from 281 pb⁻¹ 3770 MeV (data in hand)
 - semileptonic branching fractions and form factors K e v, π e v, K* e v, ρ e v
 - improved hadronic branching fractions
 - from 60 pb⁻¹ D_s scan data (3960-4260 MeV) and 60 pb⁻¹ at 4170 MeV (data in hand)
 - open charm cross sections: DD, D*D, D*D*, D_sD_s, D_sD_s*, D_s*D_s*
 - leptonic $D_s \rightarrow \mu \nu$
 - + D_s hadronic and semileptonic branching fractions
 - next two years 1250 pb⁻¹ additional data
 - 3770: improved BFs, f_{D} to ~4%, $\pi e\nu$ FF for V_{ub}
 - 4170: D_s branching fractions, f_{Ds}

Potential Impact on $V_{\mbox{\tiny CKM}}$

Current V_{CKM} From direct Measurements -no unitarity imposed

Future V_{CKM}

CLEO-c will redefine 2nd generation elements And enable improvements in 3rd generation

Investigation of Y(4260)

- Recent scan data from $\sqrt{s}=3770 4260 \text{ MeV}$
- BaBar reported a 1⁻⁻ state $Y(4260) \rightarrow \pi^{+}\pi^{-}J/\psi$ in ISR $e^{+}e^{-}\rightarrow\gamma Y(4260)$ PRL 95 142001 (2005)
- Also in $B \rightarrow K \pi^+ \pi^- J/\psi$
- Should be directly produced in e⁺e⁻→Y(4260)
- What does CLEO see?
- search for 16 modes
 - $\pi^+\pi^-J/\psi$, $\pi^0\pi^0J/\psi$, K^+K^-J/ψ
 - $\eta J/\psi$, $\pi^0 J/\psi$, $\eta' J/\psi$, $\eta \eta J/\psi$
 - π⁺π⁻ψ**(2S)**, ηψ**(2S)**
 - $\gamma \chi_{c1,2}$, $\omega \chi_{c0}$, $\pi^+ \pi^- \phi$
 - $\pi^{+}\pi^{-}\pi^{0}\mathbf{J/}\psi, \pi^{+}\pi^{-}\pi^{0}\chi_{c1,2}$

hep-ex/0602034 sub. to PRL 9 Mar 06 K M Ecklund - CLEO-c Results - La Thuile

New information on Y(4260)

- Confirmed observation of $Y(4260) \rightarrow \pi^+\pi^- J/\psi (11\sigma)$
- Observed π⁰π⁰J/ψ (5.1σ)
- Evidence for K^+K^-J/ψ (3.7 σ)
- Limits on other modes
 Implications for Y(4260)
 Interpretation (cite theories)
- $\pi^0 \pi^0 J/\psi$ and K+K-J/ ψ seen \rightarrow not a $\psi \rho^0$ molecule
 - →baryonium disfavored
- ψ**(4040)**, ψ**(41**60)
- hybrids still alive?
- $D_{(s)}^{(*)}D_{(s)}^{(*)}$ search underway

hep-ex/0602034 sub. to PRL

