Selected topics from CLEO analyses

Overview of the CLEO experiment

- \Box <u>D semileptonic decays at the $\psi(3770)$ </u>
 - Absolute Semileptonic Branching Fraction Measurements
 Measurements of Semileptonic Form Factors
- □ Observation of B_s production at the Y(5S)

Victor Pavlunin Purdue University CLEO collaboration

(Seminars at SLAC, UCSB and MIT) May – June, 2006

May, 2006

CESR and CLEO

- The CLEO experiment is located at the Cornell Electron Storage Ring (CESR), a symmetric e⁺e⁻ collider that operated in the region of the Upsilon resonances for over 20 years:
 - ✓ Max inst luminosity achieved: $1.3 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
 - ✓ Lots of important discoveries, e.g., *Y*(nS), *b*→*s* γ , *b*→*uW*.
- □ With the advent of BABAR at PEP II and Belle at KEK-B ($L = \sim 1.5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$), CLEO became uncompetitive at the *Y*(4S) resonance
- Several options were considered for future running:
 - ✓ $B_{\rm s}$ factory at the Y(5S): NO (took a short run in 2003)
 - ✓ Charm factory at and above the ψ (3770): YES
- Transition from CESR to CESR-c:
 - ✓ 12 wigglers are installed to increase synchrotron radiation/beam cooling
 - ✓ Max luminosity achieved: $\sim 7 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$

May, 2006

Selected topics from CLEO analyses

CESF

May, 2006

CESR and CLEO

CESR

- □ The CLEO experiment is located at the Cornell Electron Storage Ring (CESR), a symmetric *e*⁺*e*⁻ collider that operated in the region of the Upsilon resonances for over 20 years:
 - ✓ Max inst luminosity achieved: 1.3×10^{33} cm⁻²s⁻¹
 - ✓ Lots of important discoveries, e.g., *Y*(nS), *b*→*s* γ , *b*→*uW*.
- □ With the advent of BABAR at PEP II and Belle at KEK-B ($L = \sim 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$), CLEO became uncompetitive at the *Y*(4S) resonance
- Several options were considered for future running:
 - ✓ $B_{\rm s}$ factory at the Y(5S): NO (took a short run in 2003)
 - ✓ Charm factory at and above the ψ (3770): YES
- □ Transition from CESR to CESR-c:
 - 12 wigglers are installed to increase synchrotron radiation/beam cooling
 - ✓ Max luminosity achieved: $\sim 7 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$

The main task of the CLEO-c open charm program: Calibrate and Validate Lattice QCD

□ Help heavy flavor physics constrain the CKM matrix now:

- \checkmark Precision tests of the Standard Model or
- \checkmark Discovery of new physics beyond the SM in *b* or *c* quark decays

Difficulty: hadronic uncertainties complicate interpretation of exp. results

A realistic example using recent CKM status (<u>new B_s mixing results are not included</u>):

Important goals of the CLEO-c physics program include:

- ☐ Mesurements of $D_{(s)}$ hadronic branching fractions and studies *D* Dalitz plots ⇒ Help $B_{(s)}$ physics at *B*-factories, Tevatron, LHC:
 - ✓ $D^0 \rightarrow K^- \pi^+$, $D^+ \rightarrow K^- \pi^+ \pi^+$ and $D_s \rightarrow \phi \pi^+$ normalize almost *all other* $D_{(s)}$ and many $B_{(s)}$ modes; reduce for systematic error for exclusive |V_{cb}|
 - \checkmark Input for determination of angle γ (GLW, ADS, Dalitz plot methods)
- Search for new physics in rare charm phenomena that are small or negligible in the Standard Model
 - ✓ Direct CPV (mixing) is small in the SM < 10^{-3} (10^{-2}) ⇒ larger DCPV or mixing is evidence for new physics
 - ✓ $D \rightarrow \pi \mu \mu$, πee , others are rare in SM (~10⁻⁶) ⇒ sensitive searches for new physics that enhances these modes

May, 2006

Three generations of CLEO-c analyses at the $\psi(3770)$:

□ Oct-03 through Jan-04: Luminosity = 56 pb ⁻¹ all results are published

□ Sep-04 through Apr-05: Luminosity = 225 pb⁻¹ most analyses are on-going

□ Future running: projected total Luminosity = 750 pb⁻¹

CLEO-c is also collecting data above the $D_s D_s^{bar}$ production threshold (goal 750 pb⁻¹) and lower energies at the $\psi(2S)$.

May, 2006

Absolute Branching Fraction Measurements of D Semileptonic Decays with 56 pb⁻¹ at the $\psi(3770)$

[for more information see: PRL **95**,181801 (2005); PRL **95**,181802 (2005)]

May, 2006

- The $\psi(3770)$ is about 40 MeV above the *DD* pair threshold ($\vec{P}_D = -\vec{P}_{\overline{D}}$)
- One of the two *D*'s is reconstructed in a hadronic "tag" mode (e.g., $K^+\pi^-$). Two key variables:
 - $M_{bc} = \sqrt{E_{beam}^2 P_{candidate}^2 }$ $M_{bc} = E_{beam} E_{candidate}$
- □ From the remaining tracks and showers the semileptonic decay is reconstructed (e.g., K^-e^+v)
- □ $U \equiv E_{miss} |P_{miss}|$ is used to identify signal, where E_{miss} and P_{miss} are the missing energy and momentum approximating the neutrino *E* and *P*. The signal peaks at zero in *U*.

$$\square B^{semilep} = \frac{N_U^{semilep} / \varepsilon_{signal}}{N_{M_{bc}}^{tag} / \varepsilon_{tag}} = \frac{N_U^{semilep}}{<\varepsilon_{semilep} > N_{M_{bc}}^{tag}} \qquad \text{from Fits to } U$$

□ Full event reconstruction allows to measure any kinematic variable with no ambiguities and with high precision

 $\psi(3770) \rightarrow D^{0} \overline{D^{0}}$ $\overline{D^{0}} \rightarrow K^{+}\pi, D^{0} \rightarrow K^{-}e^{+}\nu$

May, 2006

May, 2006

4					
	Semileptonic modes listed in the table are reconstructed		Decay Mode		
	Electron identification (muons are not used):	$\frac{1}{2}$.	$D^0 \rightarrow \pi^- e^+ \nu$ $D^0 \rightarrow K^- e^+ \nu$		
	✓ Likelihood function built from E/P, dE/dX and RICH information (~95% efficient above 300 MeV with fake rates below ~0.2%)	3. 4. 5.	$D^{0} \rightarrow K^{*-}(K^{-}\pi^{0})e^{+}\nu$ $D^{0} \rightarrow K^{*-}(K^{0}_{S}\pi^{-})e^{+}\nu$ $D^{0} \rightarrow \rho^{-}e^{+}\nu$		
	 ✓ Bremsstrahlung photons for electrons are recovered 	6. 7.	$D^+ \rightarrow \pi^0 e^+ \nu$ $D^+ \rightarrow \bar{K}^0 e^+ \nu$		
	Hadron identification is based on dE/dx (all momenta) and RICH (above 700 MeV)	8. 9.	$D^+ o ar{K}^{*0} (K^- \pi^+) e^+ u$ $D^+ o ho^0 (\pi^+ \pi^-) e^+ u$		
□ K^* , ρ , and ω have 100, 150 and 20 MeV mass window cuts respectively					
	Events with extra tracks are vetoed				
	The crossing angle is accounted for and the 4-mometum of <i>D</i> is approximated by $(E_{beam}, -\sqrt{E_{beam}^2} - m_D^2 \hat{p}_{D tag})$				
	One entry per <i>U</i> plot per <i>D</i> tag mode is chosen based on final state hadron masses				
Semileptonic decays peak at zero in $U \equiv E_{miss} - P_{miss} $					
Ma	ay, 2006 Selected topics from CLEO an	alys	es 1		

May, 2006

May, 2006

Absolute branching fractions for D semileptonic decays with 56 pb⁻¹

Mode	B (%)	\mathcal{B} (%) (PDG)
$D^0 \to K^- e^+ \nu_e$	$3.44 \pm 0.10 \pm 0.10$	3.58 ± 0.18
$D^0 \to \pi^- e^+ \nu_e$	$0.26 \pm 0.03 \pm 0.01$	0.36 ± 0.06
$D^0 \to K^{*-}(K^-\pi^0)e^+\nu_e$	$2.11 \pm 0.23 \pm 0.10$	2.15 ± 0.35
$D^0 \to K^{*-}(\bar{K}^0\pi^-)e^+\nu_e$	$2.19 \pm 0.20 \pm 0.11$	2.15 ± 0.35
$D^0 o ho^- e^+ u_e$	$0.19 \pm 0.04 \pm 0.01$	and the second se
$D^+ \to \bar{K}^0 e^+ \nu_e$	$8.71 \pm 0.38 \pm 0.37$	6.7 ± 0.9
$D^+ \to \pi^0 e^+ \nu_e$	$0.44 \pm 0.06 \pm 0.03$	0.31 ± 0.15
$D^+ \to \bar{K}^{*0} e^+ \nu_e$	$5.56 \pm 0.27 \pm 0.23$	5.5 ± 0.7
$D^+ \to \rho^0 e^+ \nu_e$	$0.21 \pm 0.04 \pm 0.01$	0.25 ± 0.10
$D^+ \to \omega e^+ \nu_e$	$0.16^{+0.07}_{-0.06} \pm 0.01$	

- □ $B(D^0 \to \pi^- e^+ v) / B(D^0 \to K^- e^+ v) = (7.6\pm0.8 \pm 0.2) \times 10^{-2}$ compares favorably with the CLEO III result of $(8.2\pm0.6\pm0.5) \times 10^{-2}$ (CLEO, PRL 94, 011802 (2005)) The PDG-04 value for this ratio is 0.101 ± 0.017 .
- □ The following two modes $D^0 \to \rho^- e^+ v$ and $D^+ \to \omega e^+ v$ are observed for the first time

CLEO-c results are the most precise for ALL modes

Most systematic uncertainties are measured in data and will be reduced with a larger data sample.

References: PRL 95, 181801 (2005); PRL 95, 181802 (2005)

May, 2006

Current Studies of *D* Semileptonic Decays with 280 pb⁻¹ at the ψ (3770):

- Form Factors in $D \rightarrow \pi e^+ v$ and $D \rightarrow K e^+ v$
- Form Factors in $D \rightarrow \rho e^+ v$
- Rare *D* Semileptonic Decays $D \rightarrow \eta/\eta'/\phi e^+ v$

First results are shown at the APS meeting in Dallas, TX in April, 2006; Session L12: Exclusive *D* Meson Decays.

May, 2006

CLEO-c semileptonic analyses with 280/pb

analyses

these

uo

are working now

We

CLEO-c Exclusive Semileptonic BFs from 56 pb⁻¹

Form Factor Studies in Semileptonic Decays:

✓ Cabibbo-favored $P \rightarrow P$ semileptonic transitions

$$D^{0} \rightarrow K^{-}e^{+}V \quad \mathbf{N}\sim\mathbf{7000}$$
$$D^{+} \rightarrow \overline{K}^{0}e^{+}V \quad \mathbf{N}\sim\mathbf{2900}$$

✓ Cabibbo-suppressed $P \rightarrow P$ semileptonic transitions

$$D^{0} \rightarrow \pi^{-}e^{+}v \qquad \mathbf{N}\sim\mathbf{700}$$
$$D^{+} \rightarrow \pi^{0}e^{+}v \qquad \mathbf{N}\sim\mathbf{290}$$

✓ Cabibbo favored $P \rightarrow V$ semileptonic transitions

 $D^+ \rightarrow K^{*0} e^+ v$ N~2800

 $\begin{pmatrix} \checkmark & \text{Cabibbo suppressed } P \rightarrow V \text{ semileptonic} \\ & \text{transitions} \end{pmatrix}$

$$D^{0} \rightarrow \rho^{-}e^{+}V \qquad \mathbf{N}\sim\mathbf{130}$$
$$D^{+} \rightarrow \rho^{0}e^{+}V \qquad \mathbf{N}\sim\mathbf{170}$$

Search for rare semileptonic decays:

$$D^+ \rightarrow \eta / \eta' / \phi e^+ v$$

May, 2006

Selected topics from CLEO analyses

 \checkmark

Updated $B(D \rightarrow K/\pi/\rho/\omega e^+\nu)$ with 280 pb⁻¹

Mode	CLEO-c with 280 pb^{-1} (%)	CLEO-c with 55.8 pb^{-1} (%)
$D^0 \to K^- e^+ \nu$	$3.58 \pm 0.05 \pm 0.06$	$3.44 \pm 0.10 \pm 0.10$
$D^0 ightarrow \pi^- e^+ \nu$	$0.311 \pm 0.012 \pm 0.005$	$0.26 \pm 0.03 \pm 0.01$
$D^0 ightarrow ho^- e^+ u$	$0.157 \pm 0.017 \pm 0.005$	$0.194 \pm 0.039 \pm 0.013$
$D^+ \rightarrow K^0_S e^+ \nu$	$8.82 \pm 0.17 \pm 0.20$	$8.71 \pm 0.38 \pm 0.37$
$D^+ \to \pi^0 e^+ \nu$	$0.399 \pm 0.027 \pm 0.007$	$0.44 \pm 0.06 \pm 0.03$
$D^+ ightarrow ho^0 e^+ \nu$	$0.231 \pm 0.019 \pm 0.006$	$0.21 \pm 0.04 \pm 0.01$
$D^+ \to \omega e^+ \nu$	$0.149 \pm 0.027 \pm 0.005$	$0.16^{+0.07}_{-0.06}\pm 0.01$

Results from the two samples agree well

$$\frac{\Gamma(D^0 \to K^- e^+ \nu)}{\Gamma(D^+ \to \overline{K}^0 e^+ \nu)} = 1.024 \pm 0.024 (stat)$$

$$\frac{\Gamma(D^0 \to \pi^- e^+ \nu)}{2\Gamma(D^+ \to \pi^0 e^+ \nu)} = 0.975 \pm 0.075 \text{(stat)}$$

$$\frac{\Gamma\left(D^{0} \rightarrow \rho^{-} e v\right)}{2\Gamma\left(D^{+} \rightarrow \rho^{0} e v\right)} = 0.86 \pm 0.12 \text{(stat)}$$

PRELIMINARY

May, 2006

Comparison of $B(D^0 \rightarrow K^-/\pi^- e^+ v)$ with other experiments and projections for 750 pb⁻¹

CESR

Studies of Semileptonic Form Factors in $D \rightarrow \pi e v$ and $D \rightarrow K e v$ with 280 pb⁻¹

May, 2006

resolution. This method has been used by CLEO several times before, for example, to measure form factor ratios in $\Lambda_c \to \Lambda ev$ and $B \to D^* lv$ and by the FOCUS Collaboration in $D \to K^* lv$.

May, 2006

Form Factors in $P \rightarrow p \ e \ v$ transitions

□ Gold-plated modes are $P \to P$ semileptonic transitions as they are the simplest modes for both theory (LQCD) and experiment: $d\Gamma(D \to K(\pi)ev = G_F^2 |V_{cs(cd)}|^2 P_{K(\pi)|c(c-2)|^2}^3$

$$\frac{d\Gamma(D \to K(\pi)e\nu}{dq^{2}} = \frac{G_{F}^{2} |V_{cs(cd)}|^{2} P_{K(\pi)}^{3}}{24 \pi^{2}} |f_{+}(q^{2})|^{2},$$

where $q^{2} \equiv M^{2}(e\nu)$

□ Main goals:

CLEO

- Measure efficiency-corrected absolutelynormalized decay rate distributions and form factors
- ✓ Measure form factor shape parameters and f₊(0) to test LQCD and model predictions
- We analyze both D⁰ and D⁺ decays. They are related by isospin ⇒ a nice cross-check and improves precision

CESR

Efficiency corrected and absolutely normalized decay rates (DATA)

Subtracting background and applying efficiency corrections (matrices) we find absolute decay rates in bins of q^2 (The bin width is equal $q^2_{max}/10$, the last bins for $D^0 \rightarrow \pi e^+ v$ and $D^+ \rightarrow \pi^0 e^+ v$ are 2 and 3 times wider):

Mode	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
	(Bin 6)	(Bin 7)	(Bin 8)	(Bin 9)	$(Bin \ 10)$
$\Gamma(D^0 \to K^- e^+ \nu) [10^{-2} \times \text{ ps}^{-1}]$	1.71 ± 0.05	1.54 ± 0.05	1.26 ± 0.04	1.12 ± 0.04	0.98 ± 0.04
	(0.70 ± 0.03)	(0.57 ± 0.03)	(0.37 ± 0.02)	(0.19 ± 0.02)	(0.05 ± 0.01)
$\Gamma(D^0 \rightarrow \pi^- e^+ \nu) \text{ [ns}^{-1]}$	1.42 ± 0.14	1.27 ± 0.13	1.01 ± 0.11	1.10 ± 0.12	0.76 ± 0.09
	(0.58 ± 0.08)	(0.68 ± 0.09)	(0.37 ± 0.07)	(0.18 ± 0.05)	
$\Gamma(D^+ \to K_S^0 e^+ \nu) [10^{-2} \times \text{ps}^{-1}]$	1.74 ± 0.08	1.51 ± 0.07	1.29 ± 0.07	1.08 ± 0.06	0.85 ± 0.05
	(0.73 ± 0.05)	(0.60 ± 0.04)	(0.31 ± 0.03)	(0.17 ± 0.02)	(0.05 ± 0.01)
$2\Gamma(D^+ \to \pi^0 e^+ \nu) \text{ [ns}^{-1]}$	1.37 ± 0.22	1.21 ± 0.22	1.15 ± 0.21	0.86 ± 0.19	0.87 ± 0.18
	(0.74 ± 0.17)	(0.23 ± 0.11)	(0.63 ± 0.18)		

These rates can be fit to any form factor model w/o knowing CLEO acceptance and resolution

May, 2006

Comparison with Other Measurements [the Modified Pole Model]

First measurements of form factors for the *D*⁺ modes;

 $\Box \quad \text{CLEO-c is the most precise for } D \rightarrow \pi e^+ v$

These results are to be approved by the CLEO collaboration soon. No numerical results for form factors today.

May, 2006

Selected topics from CLEO analyses

CESR

May, 2006

Form Factors as a Stringent Test of LQCD

- Plotted LQCD results (blue) are recent results of FNAL+MILC unquenched three flavor LQCD [C. Aubin *et al.*, PRL 94 011601 (2005)]
 - ✓ Lattice systematic uncertainties dominate:
 - ✓ $LQCD(D \to \pi e v)$: $f_+(0) = 0.64 \pm 0.03 \pm 0.06;$ $\alpha = 0.44 \pm 0.04 \pm 0.07.$
 - ✓ $LQCD(D \to Kev):$ $f_{+}(0) = 0.73 \pm 0.03 \pm 0.07;$ $\alpha = 0.50 \pm 0.04 \pm 0.07.$
- The green lines are our fits to CLEO-c data
- □ The dashed lines show 1σ (stat+syst) regions

PRELIMINARY

May, 2006

Projections for α and f₊(0)

Studies of Semileptonic Form Factors in $D \rightarrow \rho ev$ with 280 pb⁻¹

May, 2006

Fit to the Data

□ Two isospin conjugate modes $D^+ \rightarrow \rho^0 ev$ and $D^0 \rightarrow \rho^e ev$ were fit simultaneously. We find:

 $\begin{array}{l} R_{_{V}} = 1.5 \pm 0.2 \, (stat) \\ R_{_{2}} = 0.6 \pm 0.2 \, (stat) \end{array}$

□ Compare to the $D \rightarrow K^* \mu v$ results from FOCUS:

 $\begin{array}{l} R_{V} = 1.50 \pm 0.07(stat + syst) \\ R_{2} = 0.88 \pm 0.08(stat + syst) \end{array}$

This is the first multidimensional fit for form factors in Cabibbosuppressed $P \rightarrow V l v$ transions

Unquenched LQCD calculations for such decays are difficult and do not exist to date

Systematic studies to be finished

May, 2006

Observation of B_s Production at the Y(5S) Resonance

[for more information see: hep-ex/0510034; PRL 96, 022002(2006)]

May, 2006

May, 2006

- □ Search for very clean modes having very large S/B ratio. The best mode to start with is $B_s \rightarrow J/\psi \phi$. The search is also made for $B_s \rightarrow J/\psi \eta$ and $B_s \rightarrow J/\psi \eta$.
- □ The J/ψ is reconstructed in the $\mu\mu$ and *ee* channels. The following channels are used for other particles: $\varphi \to KK$, $\eta \to \gamma\gamma$, $\eta' \to \eta(\gamma\gamma)\pi^+\pi$.
- **C** Expect to find only 2-3 signal events, assuming branching fractions similar to those for *B* mesons. In the Y(5S) data, we find:

□ Using data taken at other energies, the level of non- B_s background is found to be < 0.08 events at 68% CL in the $B_s^*B_s^*$ signal region.

□ The Poisson probability for 0.08 events to fluctuate to 4 events or more is $P_I < 1.6 \times 10^{-6}$

 \square M(B_s^{*})=5.4150 ± 0.0018(stat) (GeV)

 $Y(5S) \to B_s^* \overline{B}_s^*, \quad B_s^* \to B_s \gamma \text{ and} \\ B_s \to J / \psi \phi, J / \psi \to \mu^+ \mu^-, \phi \to K^+ K^-$

May, 2006

 $\phi \rho^{\neg}$

1/1

1/3

5.35

0/0 0/0

□ The choice of $B_s \rightarrow D_s^{(*)} \pi/\rho$ and the four D_s modes listed above is motivated by the difficulty of background modeling

□ MC predicts that a total of 10-14 events can be reconstructed in these channels

ΑΊΆ

 $D_s^+ \rightarrow K^+ K_S^0 K^+ \bar{K}^{0*} \phi \pi^+$

1/1

1/0

0/0

0/1

MeV/

ß

ents/

ĹШ

 $M_{bc}(B_s \text{ candidate}) (GeV/c^2)$

5.45

5.25

 \Box In the Y(5S) data we find 10 signal candidates (including background):

 $\bar{B}_{s} \rightarrow D_{s}^{+}\pi^{-}/\rho^{-}$

 $B_s \rightarrow D_s^{*+} \pi^- / \rho^-$

5.35

*B*⁰ branching fractions:

Decay Mode	$\mathcal{B} \times 10^{-3}$	
$\bar{B}_s \to D_s \pi^-$	(2.8 ± 0.3)	
$\bar{B}_s \to D_s \rho^-$	(7.7 ± 1.3)	
$\bar{B}_s \rightarrow D_s^* \pi^-$	(2.8 ± 0.2)	
$\bar{B}_s \to D_s^* \rho^-$	(6.8 ± 0.9)	

	Decay Mode	B (%)
-	$D_s \to K^+ \bar{K}^0$	(3.6 ± 1.1)
	$D_s \to K^+ K^{*0}(892)$	(3.3 ± 0.9)
	$D_s \to \phi \pi^+$	(3.6 ± 0.9)
	$D_s \to \phi \rho^+$	(6.7 ± 2.3)
	$D_s^* \to D_s \gamma$	(94.2 ± 2.5)

Using the events in the sidebands in the search plane, the level of 0121005-004 background is found to be < 1.8 events at 68% CL in the $B_s^*B_s^*$ signal region. DATA

> □ The Poisson probability for 1.8 events to fluctuate to 10 events or more is $P_{II} < 1.9 \times 10^{-5}$

 \square M(B^{*})=5.4129 ± 0.0012(stat) (GeV)

May, 2006

5.25

0.50

0.25

-0.25

-0.50

ΔE (GeV)

Selected topics from CLEO analyses

5.45

- □ P_I and P_{II} are combined to obtain an overall probability for a background fluctuation [$P = (P_I P_{II})(1 \ln(P_I P_{II}))$]: $P < 8 \times 10^{-10}$ (~6.1 σ)
- □ All signal events correspond to $B_s^*B_s^*$ production. We set the following limits (90% CL): $\frac{\sigma(e^+e^- \to B_s\overline{B_s})}{\sigma(e^+e^- \to B_s^*\overline{B_s})} < 0.16 \text{ and } \frac{\sigma(e^+e^- \to B_s\overline{B_s}) + \sigma(e^+e^- \to B_s^*\overline{B_s})}{\sigma(e^+e^- \to B_s^*\overline{B_s})} < 0.16$
- Relating B_s branching fractions to B branching fractions with contributions from the same quark-level diagrams and assuming SU(3) symmetry, we find:

$$\sigma(e^+e^- \to B_s^*\overline{B}_s^*) = [0.11^{+0.04}_{-0.03}(stat) \pm 0.02(syst)] nb$$

which is consistent with the theory (UQM): 1/3 of 0.30 - 0.35 nb of the total Y(5S) cross-section.

□ The mass of the B_s^* meson is measured to be

 $M(B_s^*) = [5.414 \pm 0.001(stat) \pm 0.003(syst)] GeV$

[for more information see: hep-ex/0510034; PRL 96, 022002 (2006)]

May, 2006

- □ After 20 years of studying *B* mesons at the *Y*(4S), in 2003 CLEO shifted its focus to charm physics at the ψ (3770).
- □ The main goals of the CLEO-c open charm program are:
 - ✓ Test and validate LQCD predictions (a theory capable of solving strongly coupled field theory equations);
 - \checkmark Provide input on charm decays to other experiments to increase their potential
- □ I have described how this is being done using *D* meson semileptonic decays.
- □ I have also presented a study of B_s production at the *Y*(5S) using a small data sample taken in 2003.

Thank you

May, 2006

Additional Slides

May, 2006

Selected topics from CLEO analyses

54

