CLEO-c Measurement of the Pseudoscalar Decay Constant f_{Ds} & the Ratio f_{Ds}/f_{D^+}

Sheldon Stone, Syracuse University

Leptonic Decays: D_(s) -

Introduction: Pseudoscalar decay constants

c and \overline{q} can annihilate, probability is ∞ to wave function overlap Example :

In general for all pseudoscalars:

$$\Gamma(\mathbf{P}^+ \to \ell^+ \nu) = \frac{1}{8\pi} G_F^2 f_P^2 m_\ell^2 M_P \left(1 - \frac{m_\ell^2}{M_P^2} \right)^2 |V_{Qq}|^2$$

Calculate, or measure if V_{Oa} is known

ICHEP Moscow, July 26 – Aug. 2, 2006

Goals in Leptonic Decays

Test theoretical calculations in strongly coupled theories in nonperturbative regime f_B & f_{Bs}/f_B needed to improve constraints from $\Delta m_d \& \Delta m_S / \Delta m_d$. Hard to measure directly (i.e. B $\rightarrow \tau^+ v$ measures $V_{up} f_B$), but we can determine f_D & f_{Ds} using $D \rightarrow \ell^+ v$ and use them to test theoretical models (i.e. Lattice QCD)

Constraints from V_{ub} , Δm_d , $\Delta m_s \& B \rightarrow \tau^+ v$

Experimental methods

 DD production at threshold: used by Mark III, and more recently by CLEO-c and BES-II.

Unique event properties
 Only DD not DDx produced

Large cross sections:

 $\sigma(D^{\circ}D^{\circ}) = 3.72\pm0.09 \text{ nb}$ $\sigma(D^{+}D^{-}) = 2.82\pm0.09 \text{ nb}$ $\sigma(D_{s}D_{s}^{*}) = ~0.9 \text{ nb}$ Continuum ~14 nb

- Ease of B measurements using "double tags"
- B_A = # of A/# of D's

e⁺

e

D.*D.*

→Result for 4170 MeV

4.25

4.3

π

CLEO D_S⁺ Results at 4170 MeV

Since e⁺e⁻→D_S*D_S, the D_S from the D_S* will be smeared in beamconstrained mass.

$$M_{BC}^2 = E_{beam}^2 - \sum \vec{p}_i^2$$

 ∴cut on M_{BC} & plot invariant mass (equivalent to a p cut)
 We use ~200 pb⁻¹ of data

Beam Constrained Mass (GeV)

Invariant masses

Total # of Tags = $19,185 \pm 325$ (stat)

New Measurements of f_{Ds}

Two separate techniques
 (1) Measure D_S⁺→μ⁺ν along with D_S→τ⁺ν, τ→π⁺ν. This requires finding a D_S⁻ tag, a γ from either D_s^{*-}→γ D_s⁻ or D_s^{*+}→γ μ⁺ν. Then finding the muon or pion using kinematical constraints
 (2) Find D ⁺ → π⁺ν π → σ⁺νν σ → σ⁺νν σ → σ⁺νν.

• (2) Find $D_S^+ \rightarrow \tau^+ v, \tau \rightarrow e^+ v v$ opposite a $D_s^$ tag

Measurement of $D_S^+ \rightarrow \mu^+ \nu$

In this analysis we use D_S*D_S events where we detect the γ from the $D_S^* \rightarrow \gamma D_S$ decay • We see all the particles from $e^+e^- \rightarrow D_s^*D_s$, γ , D_S (tag) + μ^+ except for the ν We use a kinematic fit to (a) improve the resolution & (b) remove ambiguities Constraints include: total p & E, tag D_S mass, $\Delta m = M(\gamma D_S) - M(D_S)$ [or $\Delta m = M(\gamma \mu \nu) - M(\mu \nu)$] = 143.6 MeV, E of D_{S} (or D_{S}^{*}) fixed • Lowest χ^2 solution in each event is kept • No χ^2 cut is applied

Tag Sample using γ

First we define the tag sample by computing the MM^{*2} off of the $\gamma \& D_{S}$ tag $MM^{*2} = (E_{CM} - E_{D_s} - E_{\gamma})^2 - (-\vec{p}_{D_s} - \vec{p}_{\gamma})^2$ Total of $11880 \pm 399 \pm 504$ tags, after the selection on MM^{*2}.

• To find the signal events, we compute $MM^{2} = (E_{CM} - E_{D_{S}} - E_{\gamma} - E_{\mu})^{2} - (-\vec{p}_{D_{S}} - \vec{p}_{\gamma} - \vec{p}_{\mu})^{2}$

150 100 100 50 50 0.00 0.00 0.00 0.00 0.40 0.80 Missing Mass squared (GeV²)

Signal $\tau v, \tau \rightarrow \pi v$

CHEP Moscow, July 26 – Aug. 2, 2006

Signal $\mu\nu$

Define Three Classes

Class (i), single track deposits < 300 MeV in calorimeter (consistent with μ) & no other γ > 300 MeV. (accepts 99% of muons and 60% of kaons & pions)

Class (ii), single track deposits > 300 MeV in calorimeter & no other γ > 300 MeV (accepts 1% of muons and 40% of kaons & pions)

 Class (iii) single track consistent with electron & no other γ > 300 MeV

MM² Results from 200 pb⁻¹

• Clear $D_S^+ \rightarrow \mu^+ \nu$ signal for case (i) Will show that events <0.2 GeV² are mostly $D_S \rightarrow \tau^+ \nu, \tau \rightarrow \pi^+ \nu$ in cases (i) & (ii) ■ No $D_S \rightarrow e^+ v$ seen, case (iii)

ICHEP Moscow, July 26 – Aug. 2, 2006

Sum of $D_S^+ \rightarrow \mu^+ \nu + \tau^+ \nu$, $\tau \rightarrow \pi^+ \nu$

Sum contains $100 \mu^+ \nu + \tau^+ \nu$ events for $MM^2 < 0.2$ GeV^2

Background Samples

- Two sources of background
- A) Backgrounds under invariant mass peaks – Use sidebands to estimate
- In μ⁺ν signal region 2 background (64 signal)
- Total sideband bkgrnd 5.5±1.9
- B) Backgrounds from real D_S decays, e.g. π⁺π^oπ^o, or D_S→ τ⁺ν, τ → π⁺π^oν.... < 0.2 GeV², none in μν signal region
 B(D_S → π⁺π^o) < 1.1x10⁻³ &

 γ energy cut yields <0.1 evts

Backgrounds from real D_S⁺

Mode	$\mathcal{B}(\%)$	$\# \ of \ events \ case(i)$	# of events	case(ii) Sum
$\pi^{+}\pi^{0}\pi^{0}$	1.0	0.1	0.3	0.4
$D_s^+ \to \tau^+ \nu$	6.2			
$\tau^+ \to \pi^+ \pi^0 \nu$	1.6	0.3	0.4	0.7
$\tau^+ \to \mu^+ \overline{\nu} \nu$	1.1	0	0	0
$\tau^+ \to e^+ \overline{\nu} \nu$	1.1	0.2	0	0.2
Sum		0.6	0.7	1.3

Branching Ratio & Decay Constant

• $D_S^+ \rightarrow \mu^+ \nu$

= 64 signal events, 2 background, use SM to calculate $\tau\nu$ yield near 0 MM^2 based on known $\tau\nu/\mu\nu$ ratio

■ $B(D_S^+ \rightarrow \mu^+ \nu) = (0.657 \pm 0.090 \pm 0.028)\%$

$$D_{S}^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \pi^{+} \nu$$

Sum case (i) 0.2 > MM² > 0.05 GeV² & case (ii) MM² < 0.2 GeV². Total of 36 signal and 4.8 bkgrnd

■
$$B(D_S^+ \rightarrow \tau^+ \nu) = (7.1 \pm 1.4 \pm 0.03)\%$$

- By summing both cases above, find
 - $B^{eff}(D_{S}^{+} \rightarrow \mu^{+} \nu) = (0.664 \pm 0.076 \pm 0.028)\%$
- $f_{Ds} = 282 \pm 16 \pm 7 \text{ MeV}$ • $B(D_{S}^{+} \rightarrow e^{+}v) < 3.1x10^{-4}$

Measuring $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

- B(D_S⁺ $\rightarrow \tau^+\nu$)•B($\tau^+\rightarrow e^+\nu\nu$)~1.3% is "large" compared with expected B(D_S⁺ \rightarrow Xe⁺ ν)~8%
- Technique is to find events with an e⁺ opposite D_S⁻ tags & no other tracks, with Σ calorimeter energy < 400 MeV
- No need to find γ from D_S*
 - B(D_S⁺→ τ ⁺ ν) =(6.29±0.78±0.52)%
- f_{Ds}=278 ± 17 ± 12 MeV

8 $f_{\rm D}$ / $f_{\rm I}$

- Weighted Average: f_{Ds}=280.1±11.6±6.0 MeV, the systematic error is mostly uncorrelated between the measurements
- Previously CLEO-c measured $f_{D^+} = (222.6 \pm 16.7^{+2.3}_{-3.4}) \text{ MeV}^{\dagger}$ [†]M. Artuso et al., Phys .Rev. Lett. 95 (2005) 251801
 Thus f_{Ds}/f_{D} +=1.26±0.11±0.03 $\Gamma(D_S^+ \rightarrow \tau^+ \nu)/\Gamma(D_S^+ \rightarrow \mu^+ \nu) =$ 9.9±1.7±0.7, SM=9.72, consistent with lepton universality

Comparisons with Theory

We are consistent with most models, more precision needed Using Lattice ratio find $|V_{cd}/V_{cs}| =$ 0.22 ± 0.03

Comparison with Previous Experiments

TABLE VI: These results compared with previous measurements. Results have been updated for new values of the D_s lifetime. ALEPH uses both measurements to derive a value for the decay constant.

Exp.	Mode	B	$\mathcal{B}_{\phi\pi}$ (%)	$f_{D_s^+}$ (MeV)
CLEO-c	combined	-		280.1±11.6±6.0
CLEO [30]	$\mu^+\nu$	$(6.2 \pm 0.8 \pm 1.3 \pm 1.6)10^{-3}$	3.6 ± 0.9	$273 \pm 19 \pm 27 \pm 33$
BEATRICE [31]	$\mu^+\nu$	$(8.3 \pm 2.3 \pm 0.6 \pm 2.1)10^{-3}$	3.6 ± 0.9	$315\pm43\pm12\pm39$
ALEPH [32]	$\mu^+\nu$	$(6.8 \pm 1.1 \pm 1.8)10^{-3}$	3.6 ± 0.9	$285 \pm 19 \pm 40$
ALEPH [32]	$\tau^+\nu$	$(5.8 \pm 0.8 \pm 1.8)10^{-2}$		
OPAL [34]	$\tau^+\nu$	$(7.0 \pm 2.1 \pm 2.0)10^{-3}$?	$286 \pm 44 \pm 41$
L3 [33]	$\tau^+\nu$	$(7.4\pm2.8\pm1.6\pm1.8)10^{-3}$?	$302 \pm 57 \pm 32 \pm 37$
BaBar [36]	$\mu^+\nu$	$(6.5\pm0.8\pm0.3\pm0.9)10^{-3}$	$4.8 \pm 0.5 \pm 0.4$	$279\pm17\pm6\pm19$

CLEO-c is most precise result to date for both f_{Ds} & f_{D^+}

The End