

Leptonic decays of Charm mesons

David H. Miller Purdue University (CLEO collaboration)

7th International Conference on Hyperons, Charm And Beauty Hadrons BEACH 2006 2nd to 8th July 2006 University of Lancaster, England.

Physics goals

Test lepton Universality and new physics The Standard Model predicts the $ev:\mu v:\tau v$ ratios for D (2.3×10⁻⁵: 1: 2.65) and D_s (2.4×10⁻⁵: 1: 9.7).

Test LQCD predictions

Measuring both f_D and f_{Ds} and their ratio f_D/f_{Ds} and CKM independent quantities such as $\mathcal{B}(D^+ \rightarrow l^+ v) / \mathcal{B}(D^+ \rightarrow \pi l^+ v)$ provide ever more stringent tests of LQCD.

Improve precision on CKM matrix elements and B physics LQCD predicts f_B/f_D with a small error so a precision measurement of $f_D \rightarrow$ Precision Lattice estimate of $f_B \rightarrow$ precision determination of V_{td} Similarly f_D/f_{Ds} checks f_B/f_{Bs} and lattice calculations $\rightarrow V_{cs}$ and V_{cd} .

Leptonic decays are just one part of extensive analysis including semi leptonic decays (See talk of Doris Kim this conference)

6/29/2006

This talk

Leptonic decays of the D⁺ and D_s

 $\begin{array}{l} \triangleright D^+ \to \mu^+ \nu & \text{Mark III and BES II} \\ \triangleright D^+ \to \mu^+ \nu & \text{CLEO-c} \\ \triangleright D^+ \to e^+ \nu & \text{CLEO-c} \\ \triangleright D^+ \to \tau^+ \nu & \text{CLEO-c} \\ \triangleright D_s^+ \to \mu^+ \nu & \text{BaBar} \\ \triangleright D_s^+ \to \phi \pi & (\text{importance for } f_{Ds}) \\ \triangleright B^+ \to \tau^+ \nu & \text{Belle} \end{array}$

Recent talks on D and D_s decays CHARM 2006, FPCP 2006

 $D^+ \rightarrow l^+ v$

$$\begin{pmatrix} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \\ \pi \to l \mathbf{v} & K \to \pi l \mathbf{v} & B \to \pi l \mathbf{v} \\ \mathbf{V_{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}} \\ D \to \pi l \mathbf{v} & D \to K l \mathbf{v} & B \to D^{(*)} l \mathbf{v} \\ \hline D \to l \mathbf{v} & D_s \to l \mathbf{v} \\ \mathbf{V_{td}} & \mathbf{V_{ts}} & \mathbf{V_{tb}} \\ \langle B_d | \overline{B}_d \rangle & \langle B_s | \overline{B}_s \rangle \end{pmatrix}$$

$$\Gamma(D^{+} \to l^{+}\nu) = \frac{G_{F}^{2}}{8\pi} \int_{D^{+}}^{2} m_{l}^{2} M_{D^{+}} \left(1 - \frac{m_{l}^{2}}{M_{D^{+}}^{2}}\right)^{2} |V_{cd}|^{2}$$

Hadronic Tagging

All the analyses use $e^+e^- \rightarrow c\overline{c}$ and fully reconstruct a hadronic decay (the tag) and then analyze the recoil decay to isolate the leptonic decay

July 2nd - 8th

Mark III and BES II $D^+ \rightarrow \mu^+ v$

$B(D^+ \to \mu \nu) \times 10^{-4} \qquad f_D \text{ MeV}$ MkIII <7.2 <290 BESII 12.2^{11.1}₋₅₃ ± 0.11 371⁺¹²⁹₋₁₁₉ ± 25

BEACH 2006 July 2nd - 8th

- The goal of the CLEO-c program is to provide precision measurements of charm decays
- 281pb⁻¹ at the $\Psi(3770)$ taken just above DD threshold
- 200pb⁻¹ taken at 4170 MeV to maximize D_s production
- 100pb⁻¹ scheduled at 4170 MeV July/August, 2006
- 30 million $\psi(2S)$ decays scheduled August/Sept
- November 2006 March 2008 increase the 3770 and 4170 data samples to > 0.75fb⁻¹

D Hadronic tags used for $D^+ {\rightarrow} \mu^+ v$

$$M_{BC} = \sqrt{E_{\text{beam}}^2 - |p(D)|^2}$$
$$\Delta E = E(D) - E_{\text{beam}}$$

Mode	Signal	Background
$K^+\pi^-\pi^-$	77387 ± 281	1868
$K^+\pi^-\pi^-\pi^0$	24850 ± 214	12825
$K_S\pi^-$	11162 ± 136	514
$K_S \pi^- \pi^- \pi^+$	18176 ± 255	8976
$K_S\pi^-\pi^0$	20244 ± 170	5223
$K^+K^-\pi^-$	$6535~\pm~95$	1271
Sum	$158354~\pm~496$	30677

Event selection for $D^+ \rightarrow \mu^+ v$

Muon deposited energy in calorimeter

Extra shower energy Sample of DD events

Select events with a single track in addition to the tag
θ > 39⁰ with respect to the beam
E < 300 MeV deposited by the "µ" in the calorimeter
Veto kaons
Veto events with a neutral energy cluster > 250 MeV
µ efficiency is 69.4%

Signal for $D^+ \rightarrow \mu^+ v$

		\mathbf{E}) ²	² (2
[V] [V] =	E _{beam} -	$-E_{\mu}$	-((- <i>p_D</i>	$-\boldsymbol{p}_{\mu}$

Mode	Events
Data	50
$D^+ \rightarrow \pi^+ \pi^0$	1.4
$D^+ \rightarrow K_{I} \pi^+$	0.33
$D^+ \rightarrow \tau^+ \nu_{\tau}$	1.08
Total Bck:	2.81

The same analysis is also done selecting an electron and no candidates were found

$$\mathcal{B}(D^+ \rightarrow \mu^+ \nu) = (4.4 \pm 0.7 \pm 0.1) \times 10^{-4}$$

D lifetime = 1.040± 0.007ps V_{cd} = 0.2238±0.0029

 $f_{D+} = (223 \pm 17 \pm 3) \text{ MeV}$

 $f_{D+}^{\text{FNAL/MILC}} = (201 \pm 3 \pm 17) \text{ MeV}$

 $\mathcal{B}(D^+ \to e^+ v) < 2.3 \times 10^{-5} (90\% \text{ CL})$

CLEO-c result is statistics limited Plan is to take ~ 750 pb⁻¹ at $\Psi(3770)$ and measure f_{D+} to ~ 4.5%

6/29/2006

CLEO-c results Artuso et al PRL. 95, 251801 (2005)

 $D^+ \rightarrow \tau^+ v$

Complementary analysis: selection of $D^+ \rightarrow \tau^+ \nu$ ($\tau^+ \rightarrow \pi^+ \nu$) in events with the same hadronic tags used for $D^+ \rightarrow \mu^+ \nu$.

Sample subdivided based on energy deposit of candidate track: (a) <300 MeV (includes muons and K_L as a background) (b) >300 MeV. (mainly hadronic backgrounds)

This analysis is more complicated because there are two neutrinos in the final state so the MM² distribution is much broader.

6/29/2006

Results for $D^+ \rightarrow \tau^+ v$

ℬ(D⁺→τ⁺ν)<2.1×10⁻³ (90% CL)

SM : $\mathcal{B}(D^+ \rightarrow \tau^+ \nu) = (1.1 \pm 0.2) \times 10^{-3}$

Mode	$\mathcal{B}(\%)$	# of events case(i)	# of events case(ii)
$\pi^{+}\pi^{0}$	$0.12 {\pm} 0.01$	$0.13{\pm}0.02{\pm}0.01$	$1.40{\pm}0.07{\pm}0.11$
$\overline{K}^{0}\pi^{+}$	$2.77 {\pm} 0.18$	$2.44{\pm}0.51{\pm}0.17$	$1.59{\pm}0.41{\pm}0.11$
$\mu^+\nu$	$0.04 {\pm} 0.01$	$1.25{\pm}0.03{\pm}0.19$	$0.46{\pm}0.07{\pm}0.07$
$\rho^+\pi^0$	$0.38 {\pm} 0.03$	$0.18{\pm}0.05{\pm}0.01$	$0.23{\pm}0.05{\pm}0.02$
$\pi^0 \mu^+ \nu$	$0.44 {\pm} 0.07$	$0.98{\pm}0.14{\pm}0.15$	$0.002{\pm}0.001{\pm}0.001$
$\tau^+\nu, \tau^+ \rightarrow \rho^+\nu$	$0.030 {\pm} 0.005$	$0.14{\pm}0.01{\pm}0.02$	$0.15{\pm}0.01{\pm}0.02$
$\tau^+\nu, \tau^+ \rightarrow \mu^+\nu\overline{\nu}$	0.020 ± 0.003	$0.27{\pm}0.01{\pm}0.04$	0.03(32% C.L.)
Other D^+ modes	-	0.08(32% C.L.)	0.08(32% C.L.)
D^0 modes	-	$0.23{\pm}0.12{\pm}0.01$	$0.42{\pm}0.16{\pm}0.01$
Continuum	-	$0.45{\pm}0.26{\pm}0.03$	$0.74{\pm}0.33{\pm}0.05$
Sum	-	$6.07{\pm}0.60{\pm}0.31$	$4.99{\pm}0.56{\pm}0.19$

	<300	>300
Signal Region	12	8
Estimated BG	6.1±0.6±0.3	5.0±0.6±0.2
Net	5.9	3.0

 $\frac{(D^+ \rightarrow \tau^+ \nu / D^+ \rightarrow \mu^+ \nu)_{\text{measured}}}{(D^+ \rightarrow \tau^+ \nu / D^+ \rightarrow \mu^+ \nu)_{\text{SM}}} < 1.8$

PRD 73, 112005 (2006)

6/29/2006

BEACH 2006 July 2nd - 8th

Babar $D_s^+ \rightarrow \mu^+ v$

230 fb⁻¹ preliminary results

Reconstruct charm mesons D⁰, D⁺, D_s

13 tag modes with tag momentum >2.35 GeV

•Search for $D_s^{*+} \rightarrow \gamma D_s^{+} \rightarrow \gamma \mu^+ v$ in recoil (Check using $D^{0^*} \rightarrow \gamma D^0 \rightarrow \gamma K^-\pi^+$ Remove π^+ and treat K⁻ as μ^-)

•
$$\mathbf{D}^{0} \to \mathbf{K}^{-}\pi^{+}, \mathbf{K}^{-}\pi^{+}\pi^{0}, \mathbf{K}^{-}\pi^{+}\pi^{+}\pi^{-}$$

• $\mathbf{D}^{+} \to \mathbf{K}^{-}\pi^{+}\pi^{+}(\pi^{0}), \mathbf{K}_{S}^{0}\pi^{+}(\pi^{0}), \mathbf{K}_{S}^{0}\pi^{+}\pi^{+}\pi^{-}, \mathbf{K}^{+}\mathbf{K}^{-}\pi^{+}, \mathbf{K}_{S}^{0}\mathbf{K}^{+}$

 $D_S^+ \to K_S^0 K^+, \varphi \rho^+$

 $\begin{array}{l} \bullet \quad D^{*+} \to D^0 \pi^+, \, D^0 \to K_S^{\ 0} \pi^+ \pi^- (\pi^0), \\ K_S^{\ 0} K^+ K^-, \, K_S^{\ 0} \pi^0 \end{array}$

Paul D Jackson Charm 2006

BEACH 2006 July 2nd - 8th

Event selection $D_s^{*+} \rightarrow \gamma D_s^{+} \rightarrow \gamma \mu^+ \nu$

Results

•Fit to Signal, leptonic background $D \rightarrow \mu v$, and fake muon combinatoric background (shapes from simulation)

Importance of $\mathcal{B}(D_s \rightarrow \phi \pi)$

The PDG value of $Ds \rightarrow \varphi \pi$ is 3.6 ± 0.9% which has a 25% error. Fits use a mass cut and line shape (BW + Gaussian) however the presence of $f_0\pi^+$ & other interferences complicates precise measurements.

■CLEO $\mathcal{B}^{eff}(D_S \to \phi \pi^+) = (3.59 \pm 0.77 \pm 0.48)\%$ Phys. Lett.B378:364-372,1996 ■BaBar $\mathcal{B}^{eff}(D_S \to \phi \pi^+) = (4.81 \pm 0.52 \pm 0.38)\%$ PRD-RC 71, 091104 (2005)

CLEO-c does not yet have a new measurement but we are accumulating data

From the FPCP talk of Sheldon Stone using 71pb⁻¹ of CLEO-c data.

±10 MeV cut in K⁺K⁻ mass finds $\mathscr{B}^{eff}(D_S \rightarrow \phi \pi^+) = (3.49 \pm 0.39)\%.$ ±20 MeV cut in K⁺K⁻ mass finds $\mathscr{B}^{eff}(D_S \rightarrow \phi \pi^+) = (3.73 \pm 0.42)\%.$ $\mathscr{B}^{eff}(D_S \rightarrow \phi \pi^+) = (3.5 \pm 0.4)\%.$ (using inclusive production) $\mathscr{B}^{eff}(K^+K^-\pi^+) = 4.54 \pm 0.43 \pm 0.25$ (PDG = 4.3±1.2)

Summary of $D_s^+ \rightarrow \mu^+ v$ measurements

WA75 (93) BES (95) normalized to E653 (96) L3 (97) CLEO (98) • $\mathcal{B}(D_{s}^{+} \rightarrow \phi \pi^{+}) = (3.6 \pm 0.9)\%$ (PDG) BEATRICE (00) OPAL (01) ALEPH (02) Average (PDG 04) •BaBar f_{Ds}=248±35 MeV This Measurement (PDG norm) This Measurement (BABAR norm) New average: MILC quenched (97) $f_{Ds} = (261 \pm 31) \text{ MeV}$ MILC unquenched nf=2 (02) MILC+HPQCD unquenched nf=3 (04) 200 300 400 •Dominated by $\mathcal{B}(D_s^+ \rightarrow \phi \pi^+)$ (12.5% on f_{D_s}) f_D (MeV)

Lattice QCD: $f_{D_s} = (249 \pm 17) \text{MeV}$

Lattice ~ 1.24

The extra photon in $D_s * D_s$ is not a real complication.

The cross-section for D_s is smaller than for D^+D^- at the 3770 as is the tag efficiency but since the D_s decay is not Cabibbo suppressed the signal yield (per pb⁻¹) will be at least as good as for D^+ so comparable data samples will yield the same precision

CLEO-c ~200 pb⁻¹ at E_{cm} ≈4170 MeV this summer

Plan to take ~750 pb⁻¹ at $E_{cm} \approx 4170$ MeV by March 2008

6/29/2006

BEACH 2006 July 2nd – 8th

First observation of $B^+ \rightarrow \tau^+ v$

Observe 21.2^{+6.7}_{-5.7} events with a significance of 4.2σ

Performance de la construction d

K Ikado [Belle Collaboration], FPCP 2006 hep-ex/0605068.

Data sample is 414fb⁻¹ 5 tau decay modes are used Variable is total neutral energy in calorimeter not associated with the tag

 $\mathcal{B}(\mathbf{B}^+ \to \tau^+ \mathbf{v}) = (1.06^{+0.34}_{-0.28}(\text{stat})^{+0.18}_{-0.16}(\text{syst})) \times 10^{-4}$

SM : B(B $\rightarrow \tau v$)=(1.59 ± 0.40)×10⁻⁴

 $f_B \cdot |V_{ub}| = (7.73^{+1.24}_{-1.02}(\text{stat})^{+0.66}_{-0.58}(\text{syst})) \times 10^{-4} \text{ GeV}$

 $f_B = 0.176^{+0.028}_{-0.023} (\text{stat})^{+0.020}_{-0.018} (\text{syst}) \text{ GeV}$ $f_B = 0.216 \pm 0.022 \text{ GeV} (\text{HPQCD})$

Summary/Future

Theory errors dominate the width of the bands. *Precision* QCD and *precision* charm data \rightarrow theory errors of a few % on B system decay constants & Semileptonic form factors

 $f_{\rm D}$ and $f_{\rm Ds}$

Experiment and LQCD consistent CLEO-c error 8% LQCD error 8% with 0.75fb⁻¹ errors ~ 4.5% BES III errors ~2% CLEO-c, BaBar, Belle, BES III and advances in LQCD are all required