Charm Decays at Threshold

Sheldon Stone, Syracuse University

What We Hope to Learn

- Purely Leptonic Charm Decays D→ℓ⁺ν: Check QCD calculations including Lattice (LQCD)
- Semileptonic decay rates & form-factors: QCD checks and the reverse, use QCD to extract V_{cq}
- Hadronic Charm Decays
 - Engineering numbers useful for other studies
 - B→Charm is dominant, so knowing lots about charm is useful, e.g. absolute B's, resonant substructure, phases on Dalitz plots, especially versus CP eigenstates
 - Learn about Strong Interactions, esp. final state interactions
- Charm Mixing & CP Violation
 - Can we see new physics? SM mixing & CP violation is small, so new effects don't have large SM background as in the K or B systems
- ALL RESULTS SHOWN HERE ARE FROM CLEO-C ALMOST ALL ARE *PRELIMINARY*. Exceptions will be noted
 Due to lack of time, many interesting results are omitted

TEP Meeting on the Future of Heavy Flavor Physics , July 24-25, 2006

Absolute Charm Meson Branching Ratios & Other Hadronic Decays

NEW REAL CONTRACTOR AND DE REAL PORTER A CONTRACTOR DE CONTRACTOR DE LA CONTRACTÓR DE CONTRACTOR DE CONTRACTOR

 D^{o} , D^{+} & D_{S}

Experimental methods

•DD production at threshold: used by Mark III, and more recently by CLEO-c and BES-II.

> ■Unique event properties >Only DD not DDx produced

Large cross sections:

 $\sigma(D^{\circ}D^{\circ}) = 3.72\pm0.09$ nb $\sigma(D^{+}D^{-}) = 2.82\pm0.09$ nb $\sigma(D_{S}D_{S}^{*}) = 0.9$ nb

> Ease of B measurements using "double tags"

■ *B*_A = # of A/# of D's

ITEP Meeting on the Future of Heavy Flavor Physics , July 24-25, 2006

Continuum ~14 nb

Charm Cross-Sections

$D^+ \rightarrow K^- \pi^+ \pi^+$ at the ψ'' (CLEO-c) Double tags

Single tags

281 pb⁻¹ of data at $\psi(3770)$

Absolute B Results for D⁺ & D^o 57 pb⁻¹

CLEO D_S⁺ Results at 4170 MeV

Since e⁺e⁻→D_S*D_S, the D_S from the D_S will be smeared in beam-constrained mass.
 ∴ cut on M & shot

 ∴ cut on M_{BC} & plot invariant mass (equivalent to a p cut)
 We use ~200 pb⁻¹ of

data

ITEP Meeting on the Future of Heavy Flavor Physics, July 24-25, 20

Invariant masses

Total # of Tags = 19185 ± 325 (stat)

ITEP Meeting on the Future of Heavy Flavor Physics, July 24-25,

Single & Double D_S⁺ Tags in 200 pb⁻¹

Single tags							
	K_SK^+	K^-K^+	$\pi^+ K^-K^+$	$\pi^{+}\pi^{0}$ $\pi^{+}\pi^{+}\pi^{-}$	$ \pi^+\eta$	7	$\tau^+\eta'$
D_s	$^+_{s}$ 1054.8 \pm 39.4	4315.8 \pm	88.8 1159.7 -	\pm 84.5 969.5 \pm 79	$9.5 547.0 \pm 49$	9.8 361.	8 ± 23.4
D_s	$=$ 927.8 \pm 37.3	4349.7 \pm	88.7 1250.6 -	\pm 84.4 946.7 \pm 77	7.7 569.8 \pm 49	9.7 371.	5 ± 23.6
	Double tags						
		K_SK^-	$K^+K^-\pi^-$	$K^+K^-\pi^-\pi^0$	$\pi^-\pi^-\pi^+$	$\pi^-\eta$	$\pi^-\eta'$
	$K_S K^+$	7.7	27.0	18.7	7.3	4.0	5.0
	$K^-K^+\pi^+$	18.0	104.7	43.7	30.7	12.0	8.0
	$K^-K^+\pi^+\pi^0$	8.7	35.7	14.0	13.3	1.0	5.7
	$\pi^+\pi^+\pi^-$	3.3	22.7	16.0	13.3	4.7	4.0
	$\pi^+\eta$	0.0	10.0	2.7	6.0	1.0	1.7
	$\pi^+\eta'$	3.0	10.0	3.0	3.7	1.0	0.0
			mas	ss D_{c} + (GeV)			

1.94 1.96 1.98

2.06

2.04

2.02

1.98

1.96

1.94

1.92

m(D_{_}) (GeV/c²)

(GeV)

mass D

Modes: Different selection criteria
than other analyses
Clean double
tag signal

Absolute B Results for D_S⁺ 200 pb⁻¹

• Partial branching fraction ± 10 MeV around m(ϕ): **1.98±0.12±0.09** % ±20 MeV around m(ϕ): 2.25±0.13±0.12 % (need x2 for $\phi \rightarrow K^+K^-$)

6

$D^+ \rightarrow \pi^+ \pi^- \pi^+$ Dalitz Results

Mode	Fit Values			
	Relative Amplitude	Phase (degrees)	Fit Fraction (%)	B
ρ (770) π ⁺	1.0	0	20.0±2.3±0.9	<u> </u>
f ₀ (980)π ⁺	$1.4 \pm 0.2 \pm 0.2$	12±10±5	4.1±0.9±0.3	ц т н
f ₂ (1270)π ⁺	2.1±0.2±0.1	237±6±3	$18.2 \pm 2.6 \pm 0.7$	٦
f ₀ (1370)π ⁺	$1.3\pm0.4\pm0.2$	-21±15±14	2.6±1.8±0.6	
f ₀ (1500)π ⁺	$1.1 \pm 0.3 \pm 0.2$	-44±13±16	3.4±1.0±0.8	
σ <mark>pole</mark>	3.7±0.3±0.2	-3±4±2	41.8±1.4±2.5	
	Limits on	Other Contribu	ting Modes	
ρ (1450) π ⁺	0.9±0.5	51±22	<2.4	
f ₀ (1710)π ⁺	1.0±1.5	-17±90	<3.5	
f ₀ (1790)π ⁺	1.0±1.1	23±58	<2.0	
Non- resonant	0.17±0.14	-17±90	<3.5	
I=2 $\pi^+\pi^+$ S-wave	0.17±0.14	23±58	<3.7	

Likelihood Fit including: Amplitude, phase, spin-dependent PW (*ie.* BW), angular distribution, Blatt Weiskopf angular momentum penetration factor.

281pb⁻¹, untagged Signal and background box in ΔE , m_{BC} Dalitz plot statistics: N($\pi^-\pi^+\pi^+$) ~2600 N(K_s π^+) ~2240 N_{back} ~ 2150

> All coherent X: Rho(770) X: f2(1270)

 $m^{2}(\pi^{+}\pi^{+})$ (GeV/c²)²

Consistency with E791

- E791 BW s Fit Fraction = $(46.3\pm9.0\pm2.1)\%$ $\Box \sigma$ pole provides a good description of the DP

$$Pole_A(s) = \frac{1}{s - s_A}$$
, where, $s_{\sigma} = (0.47 - i0.22)^2 \text{ GeV}^2$

Inclusive D_(s) Hadronic Decays

- Inclusive ss rates expected to be higher for D_s⁺ than D⁰/D⁺.
- CLEO-c measurements with 281 pb⁻¹ D⁰/D⁺ (3770 MeV) and 200 pb⁻¹ D_s⁺ (4170 MeV).
- Fully reconstruct one D_(s), search for η, η', φ on the other side
- Much larger rates for D_S as anticipated

Less than $\frac{1}{2}$ of D_S decays end up in $s\bar{s}$ mesons

 η includes feed-down from $\eta'.$

TEP Meeting on the Future of Heavy Flavor Physics, July 24-25, 2006

Leptonic & Semileptonic Decays

INTERNAL CONTRACTOR AND ADDRESS OF A VERY AND ADDRESS OF ADDR

Leptonic Decays: D_(s)

Introduction: Pseudoscalar decay constants

c and \overline{q} can annihilate, probability is ∞ to wave function overlap Example :

In general for all pseudoscalars:

$$\Gamma(\mathbf{P}^+ \to \ell^+ \nu) = \frac{1}{8\pi} G_F^2 f_P^2 m_\ell^2 M_P \left(1 - \frac{m_\ell^2}{M_P^2} \right)^2 |V_{Qq}|^2$$

Calculate, or measure if V_{Oq} is known

ITEP Meeting on the Future of Heavy Flavor Physics , July 24-25, 2006

Goals in Leptonic Decays

Test theoretical calculations in strongly coupled theories in nonperturbative regime f_B & f_{Bs}/f_B needed to improve constraints from $\Delta m_d \& \Delta m_S / \Delta m_d$. Hard to measure directly (i.e. B $\rightarrow \tau^+ v$ measures $V_{up} f_B$), but we can determine f_D & f_{Ds} using $D \rightarrow \ell^+ v$ and use them to test theoretical models (i.e. Lattice QCD)

Constraints from V_{ub} , Δm_d , $\Delta m_s \& B \rightarrow \tau^+ v$

New Measurements of f_{Ds}

 Two separate techniques
 (1) Measure D_S⁺→μ⁺ν along with D_S→τ⁺ν, τ→π⁺ν. This requires finding a D_S⁻ tag, a γ from either D_s^{*-}→γ D_s⁻ or D_s^{*+}→γ μ⁺ν. Then finding the muon or pion using kinematical constraints

 (2) Find D_S⁺→τ⁺ν, τ →e⁺νν opposite a D_s⁻ tag

Measurement of $D_S^+ \rightarrow \mu^+ \nu$

In this analysis we use D_S*D_S events where we detect the γ from the $D_S^* \rightarrow \gamma D_S$ decay • We see all the particles from $e^+e^- \rightarrow D_s^*D_s$, γ , D_S (tag) + μ^+ except for the ν We use a kinematic fit to (a) improve the resolution & (b) remove ambiguities Constraints include: total p & E, tag D_S mass, $\Delta m = M(\gamma D_S) - M(D_S)$ [or $\Delta m = M(\gamma \mu \nu) - M(\mu \nu)$] = 143.6 MeV, E of D_{S} (or D_{S}^{*}) fixed • Lowest χ^2 solution in each event is kept **No** χ^2 cut is applied

Tag Sample using γ

First we define the tag sample by computing the MM*² off of the $\gamma \& D_{S}$ tag $MM^{*2} = (E_{CM} - E_{D_s} - E_{\gamma})^2 - (-\vec{p}_{D_s} - \vec{p}_{\gamma})^2$ Total of $11880 \pm 399 \pm 504$ tags, after the selection on MM^{*2}.

• To find the signal events, we compute $MM^{2} = (E_{CM} - E_{D_{S}} - E_{\gamma} - E_{\mu})^{2} - (-\vec{p}_{D_{S}} - \vec{p}_{\gamma} - \vec{p}_{\mu})^{2}$

Signal $\mu\nu$

Signal $\tau \overline{\nu, \tau \rightarrow \pi \nu}$

ITEP Meeting on the Future of Heavy Flavor Physics , July 24-25, 2006

Define Three Classes

Class (i), single track deposits < 300 MeV in calorimeter (consistent with μ) & no other γ > 300 MeV. (accepts 99% of muons and 60% of kaons & pions)

Class (ii), single track deposits > 300 MeV in calorimeter & no other γ > 300 MeV (accepts 1% of muons and 40% of kaons & pions)

 Class (iii) single track consistent with electron & no other γ > 300 MeV

MM² Results from 200 pb⁻¹

• Clear $D_S^+ \rightarrow \mu^+ \nu$ signal for case (i) Will show that events <0.2 GeV² are mostly $D_S \rightarrow \tau^+ \nu, \tau \rightarrow \pi^+ \nu$ in cases (i) & (ii) ■ No $D_S \rightarrow e^+ v$ seen, case (iii)

ITEP Meeting on the Future of Heavy Flavor Physic

Sum of $D_S^+ \rightarrow \mu^+ \nu + \tau^+ \nu$, $\tau \rightarrow \pi^+ \nu$

- Two sources of background
 A) Backgrounds under invariant mass peaks – Use sidebands to estimate
- In μ⁺ν signal region 2 background (64 signal)
- Sideband bkgrnd 5.5±1.9
- B) Backgrounds from real D_S decays, e.g. π⁺π^oπ^o, or D_S→ τ⁺ν, τ → π⁺π^oν....
 < 0.2 GeV², none in μν signal region. Total of 1.3 additional events.
- B(D_S → $\pi^+\pi^\circ$) < 1.1x10⁻³ & γ energy cut yields <0.1 evts
- Total background < 0.2 GeV² is 6.8 events, out of the 100

Branching Ratio & Decay Constant

• $D_S^+ \rightarrow \mu^+ \nu$

= 64 signal events, 2 background, use SM to calculate $\tau\nu$ yield near 0 MM^2 based on known $\tau\nu/\mu\nu$ ratio

■ $B(D_S^+ \rightarrow \mu^+ \nu) = (0.657 \pm 0.090 \pm 0.028)\%$

$$D_{S}^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \pi^{+} \nu$$

Sum case (i) 0.2 > MM² > 0.05 GeV² & case (ii) MM² < 0.2 GeV². Total of 36 signal and 4.8 bkgrnd

■
$$B(D_S^+ \rightarrow \tau^+ \nu) = (7.1 \pm 1.4 \pm 0.03)\%$$

- By summing both cases above, find
 - $B^{eff}(D_{S}^{+} \rightarrow \mu^{+} \nu) = (0.664 \pm 0.076 \pm 0.028)\%$
- $f_{Ds} = 282 \pm 16 \pm 7 \text{ MeV}$ • $B(D_s^+ \rightarrow e^+ v) < 3.1 \times 10^{-4}$

Measuring $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

- B(D_S⁺ $\rightarrow \tau^+\nu$)•B($\tau^+\rightarrow e^+\nu\nu$)~1.3% is "large" compared with expected B(D_S⁺ \rightarrow Xe⁺ ν)~8%
- Technique is to find events with an e⁺ opposite D_S⁻ tags & no other tracks, with Σ calorimeter energy < 400 MeV
- No need to find γ from D_S^*
 - B(D_S⁺→τ⁺ν) =(6.29±0.78±0.52)%
- $f_{Ds} = 278 \pm 17 \pm 12 \text{ MeV}$

$f_{D_s} \ \& \ f_{D_s} / f_{D^+}$

- Weighted Average: f_{Ds}=280.1±11.6±6.0 MeV, the systematic error is mostly uncorrelated between the measurements (More data is on the way & systematic errors are being addressed)
- Previously CLEO-c measured

f_{D⁺} =(222.6±16.7^{+2.3}_{-3.4}) MeV[†] M. Artuso et al., Phys .Rev. Lett. 95 (2005) 251801 ■ Thus f_{Ds}/f_D+=1.26±0.11±0.03 ■ $\Gamma(D_{s}^{+} \rightarrow \tau^{+}\nu)/\Gamma (D_{s}^{+} \rightarrow \mu^{+}\nu)=$ 9.9±1.7±0.7, SM=9.72, consistent with lepton universality

ITEP Meeting on the Future of Heavy Flavor Physics , July 24-25, 200

 $D^+ \rightarrow \mu^+ \nu$

Comparisons with Theory

We are consistent with most models, more precision needed Using Lattice ratio find $|V_{cd}/V_{cs}| =$ 0.22 ± 0.03

Comparison with Previous Experiments

TABLE VI: These results compared with previous measurements. Results have been updated for new values of the D_s lifetime. ALEPH uses both measurements to derive a value for the decay constant.

Exp.	Mode	B	$\mathcal{B}_{\phi\pi}$ (%)	$f_{D_s^+}$ (MeV)
CLEO-c	$\operatorname{combined}$	-		280.1±11.6±6.0
CLEO [30]	$\mu^+\nu$	$(6.2 \pm 0.8 \pm 1.3 \pm 1.6)10^{-3}$	3.6 ± 0.9	$273 \pm 19 \pm 27 \pm 33$
BEATRICE [31]	$\mu^+\nu$	$(8.3 \pm 2.3 \pm 0.6 \pm 2.1)10^{-3}$	3.6 ± 0.9	$315\pm43\pm12\pm39$
ALEPH [32]	$\mu^+\nu$	$(6.8 \pm 1.1 \pm 1.8)10^{-3}$	3.6 ± 0.9	$285 \pm 19 \pm 40$
ALEPH [32]	$\tau^+\nu$	$(5.8 \pm 0.8 \pm 1.8)10^{-2}$		
OPAL [34]	$\tau^+\nu$	$(7.0 \pm 2.1 \pm 2.0)10^{-3}$?	$286 \pm 44 \pm 41$
L3 [33]	$\tau^+\nu$	$(7.4 \pm 2.8 \pm 1.6 \pm 1.8)10^{-3}$?	$302\pm57\pm32\pm37$
BaBar [36]	$\mu^+\nu$	$(6.5\pm0.8\pm0.3\pm0.9)10^{-3}$	$4.8 \pm 0.5 \pm 0.4$	$279\pm17\pm6\pm19$

CLEO-c is most precise result to date for both f_{Ds} & f_{D^+}

Goals in Semileptonic Decays

Either take V_{cq} from other information and test theory, or use theory and measure V_{cq} V_{cs} use $D \rightarrow K(K^*)\ell\nu$ to measure form-factor shapes to distinguish among models & test lattice QCD predictions V_{cd} use $D \rightarrow \pi(\rho)\ell\nu$

V_{cd} & V_{cs} with precise unquenched lattice predictions, + V_{cb} would provide an important unitarity check

■V_{ub} use D→ $\pi\ell\nu$ to get form-factor for B→ $\pi\ell\nu$, at same v•v point using HQET (& $\rho\ell\nu$)

TEP Meeting on the Future of Heavy Flavor Physics, July 24-25, 2006

Exclusive Semileptonic Decays

 Best way to determine magnitudes of CKM elements, in principle is to use semileptonic decays. Decay rate α|V_{QiQf}|²
 This is how V (λ) and V (A) h

 \blacklozenge This is how V_{us} (λ) and V_{cb} (A) have been determined

• Kinematics: $q^2 = (p_D^{\mu} - p_{hadron}^{\mu})^2 = m_D^2 + m_P^2 - 2E_P m_D$

Matrix element in terms of form-factors (for D->Pseudoscalar $\ell^+ \nu$

 $\left\langle P(P_{P}) \Big| J_{\mu} \Big| D(P_{D}) \right\rangle = f_{+}(q^{2})(P_{D} + P_{P})_{\mu} + f_{-}(q^{2})(P_{D} - P_{P})_{\mu}$ $\blacklozenge \text{ For } \ell = e, \ f_{-}(q^{2}) \rightarrow 0: \quad \underline{d\Gamma(D \rightarrow Pev)}_{q} = \frac{\left| V_{cq} \right|^{2} P_{P}^{3}}{2 (1 - q^{2})^{2}} \Big| f_{+}(q^{2}) \Big|^{2}$

Form-Factor Parameterizations

In general
$$f_{+}(q^{2}) = \frac{f_{+}(0)}{1-\alpha} \frac{1}{1-q^{2}/m_{pole}^{2}} + \frac{1}{\pi} \int_{(M_{D}+m)^{2}}^{\infty} dq'^{2} \frac{\operatorname{Im}(f(q'^{2}))}{q'^{2}-q^{2}}$$

• Modified Pole
$$f_+(q^2) = \frac{f_+(0)}{(1-q^2/m_{pole}^2)(1-\alpha q^2/m_{pole}^2)}$$

Series Expansion

$$f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2},t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0}) [z(q^{2},t_{0})]^{k}$$

$$t_{\pm} \equiv \left(M_D \pm m_{\pi(K)}\right)^2, \quad z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

Hill & Becher, Phys. Lett. B 633, 61 (2006)

ITEP Meeting on the Future of Heavy Flavor Physics, July 24-25, 20

Untagged D \rightarrow K(or π) e v (281/pb)

New Tagged Results for 281 pb⁻¹

TEP Meeting on the Future of Heavy Flavor Physics , July 24-25, 2006

Form Factors: Tagged

 $D \rightarrow K e^+ v$

 $D \rightarrow \pi e^+ v$

ITEP Meeting on the Future of Heavy Flavor Physics , July 24-25, 2006

Form-Factors Compared to Lattice

Lattice predictions* $D \rightarrow \pi e v$ $f_{+}(0)=0.64\pm0.03\pm0.06$ $\alpha = 0.44 \pm 0.04 \pm 0.07$ D→Kev $f_{+}(0)=0.73\pm0.03\pm0.07$ $\alpha = 0.50 \pm 0.04 \pm 0.07$

*C. Aubin *et al*., PRL **94** 011601 (2005)

ITEP Meeting on the Future of Heavy Flavor Physic

Discovery of $D^{o} \rightarrow K\pi\pi \ e^{+}\nu$

■ $B(D^{o} \rightarrow K_{1}(1270)e^{+}v)^{*}B(K_{1}(1270) \rightarrow K^{-}\pi^{+}\pi^{-}) = (2.2^{+1.4}_{-1.0} \pm 0.2)x10^{-4}$ consistent with ISGW2 prediction

TCQA: The Quantum Correlation Analysis

C = -1 $e^+e^$ interference $K^{-}\pi^{+}$ $K^+\pi^ K^{-}\pi^{+}$ $K^+\pi^$ forbidden by $K^{-}\pi^{+}$ $K^{-}\pi^{+}$ Bose symmetry $K^+ h v$ $K^{-}\pi^{+}$ CP+ $K^+ h_{\nu}$ maximal CP- $K^+ h \nu$ constructive K-/+√ *K*⁺*L*ν interference CP+CPforbidden by CP+CP+**CP** conservation CP-CP-

Because of quantum correlation between D^0 and D^{0} , not all final states allowed. This affects: total rate apparent branching fractions Two entangled causes: Interf. between CF and DCSD *D* mixing: single tag rates depend on $y = \mathcal{B}(CP+) - \mathcal{B}(CP-)$. Can exploit coherence to measure DCSD and mixing.

From D. Asner & W. Sun [*hep-ph/0507238*]

TEP Meeting on the Future of Heavy Flavor Physics, July 24-25, 2006

Sensitivity with 1 fb⁻¹

Sensitivities are comparable with present experiments Statistical errors dominate y, but are the ~= to systematic errors for x Can also use D^oD^o* events at higher

energies

Sensitivities versus Increased Statistics

Decay constants: statistics limited

■ D⁺ 7.5% for 281 pb⁻¹ at 3770.

Ultimate systematic limit may be ~1%

- **D**_S 4.1% for 200 pb⁻¹ at 4170. Ultimate systematic limit may be $\sim 2\%$
- Dalitz analyses e.g. $D^{o} \rightarrow CP$ vs. $D^{o} \rightarrow K_{S}\pi^{+}\pi^{-}$
 - Statistics starved until at least~10 fb⁻¹
- Semileptonic Decays
 - Branching ratios of Cabibbo favored & suppressed modes will be well known with 1 fb⁻¹
 - Form-factors will need 10 fb⁻¹
 - Rare modes will be statistics starved for a long time

The Quantum Correlation Analysis will give some results with 1 fb⁻¹, needs 100x

ITEP Meeting on the Future of Heavy Flavor Physics, July 24-25, 200

Conclusions

Beginning to see accurate absolute B $B(D^{\circ} \rightarrow K^{-}\pi^{+}) = (3.85 \pm 0.0.07)\%$ not preliminary $B(D^+ \rightarrow K^- \pi^+ \pi^+) = (9.43 \pm 0.31)\%$ not preliminary $B(D_S \rightarrow K^+K^-\pi^+) = (5.57 \pm 0.36)\%$ preliminary • $f_{D^+} = (222.6 \pm 16.7^{+2.3}_{-3.4}) \text{ MeV}$ not preliminary $f_{Ds} = 280.1 \pm 11.6 \pm 6.0$ MeV preliminary f_{Ds}/f_{D} = 1.26±0.11±0.03 *preliminary* Accurate semi-leptonic form-factors confronting QCD

Much much more to do – Best wishes to BES

The End

Untagged: Form-Factor Results

Simp. Pole	$f^{+}(q^{2}) = \frac{f^{+}(0)}{\left(1 - q^{2} / m_{po}^{2}\right)}$	$f^{+}(q^{2}) = \frac{f^{+}(0)}{\left(1 - q^{2} / m_{pole}^{2}\right)}$		
Decay Mode	$ V_{cx} f^+(0)$	m_{pole}		
$D^0 o \pi^{\pm} e u$	$0.146 \pm 0.004 \pm 0.003$	$1.87 \pm 0.03 \pm 0.01$		
$D^0 ightarrow K^{\pm} e v$	$0.736 \pm 0.005 \pm 0.010$	$1.98 \pm 0.03 \pm 0.02$		
$D^{\pm} ightarrow \pi^0 e u$	$0.152 \pm 0.007 \pm 0.004$	$1.97 \pm 0.07 \pm 0.02$		
$D^{\pm} ightarrow K^0 e u$	$0.719 \pm 0.009 \pm 0.012$	$1.97 \pm 0.05 \pm 0.02$		

Mod. Pole
$$f^{+}(q^{2}) = \frac{f^{+}(0)}{(1-q^{2}/m_{pole}^{2})(1-\alpha q^{2}/m_{pole}^{2})}$$

Decay Mode	$ V_{cx} f^+(0)$	α
$D^0 o \pi^{\pm} e u$	$0.142 \pm 0.005 \pm 0.003$	$0.37 \pm 0.09 \pm 0.03$
$D^0 ightarrow K^{\pm} e v$	$0.734 \pm 0.006 \pm 0.010$	$0.19 \pm 0.05 \pm 0.03$
$D^{\pm} ightarrow \pi^0 e {m u}$	$0.151 \pm 0.008 \pm 0.004$	$0.12 \pm 0.17 \pm 0.05$
$D^{\pm} ightarrow K^0 e v$	$0.718 \pm 0.009 \pm 0.012$	$0.20 \pm 0.08 \pm 0.04$

ITEP Meeting on the Future of Heavy Flavor Physics, July 24-25, 2006