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I. Charm Semileptonic Decays as Tests of QCD

Charm SL decays provide a high quality lattice calibration, which is 
crucial in reducing systematic errors in the Unitarity Triangle. The 
techniques validated by charm decays can be applied to beauty 
decays. 
⇒ Improvement of CKM @ beauty sector.

The hadronic complications are contained in the form factors, which can 
be calculated via non-perturbative lattice QCD, HQET, quark models, etc.

BF (decay rate) study provides a measurement of |Vcq|2

φ, etc.
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An Example of Semileptonic Decays: CLEO-c
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II. Inclusive Semileptonic BF.
CLEO-c 281 pb-1

0

0 0

0.985 0.028 0.015
SL SL
D D D
SL SL
D D D

B
B

τ
τ

+ +

+

Γ
= × = ± ±

Γ

Inclusive BF vs sum of exclusive BF

• Consistent with the known 
exclusive modes saturating the 
inclusive B .

• Some room for new modes?

Bmode

(15.1 ± 0.5 ± 0.5)%Σi Bi (D+ → Xe+ν)
(16.13 ± 0.20 ± 0.33)%D+ →Xe+ν

(6.1 ± 0.2 ± 0.2)%Σi Bi (D0 → Xe+ν)
(6.46 ± 0.17 ± 0.13)%D0→Xe+ν

• Consistent with SL isospin symmetry:

Extrapolated 
below 0.2
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Predictions

Data (2004)
V/PS Anomaly in Γ(D→K*l ν) / Γ( K l ν)

• Recent V/PS measurements are 
consistent:

FOCUS (04)
CLEO(05)
two new BES(06).

The V/PS anomaly is 
rapidly fading away.

Plot courtesy of BES

• Early V/PS predictions were 1.5 – 2 × larger than known data ( the A1 form 
factor problem ). 
• Since 1995 predictions have stabilized close to data. 
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III. D → Pseudoscalar l ν Form Factors
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What do we know about f+(q2) ? →

This process can give a clean measurement of CKM 
angles and powerful tests of LQCD.
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Unfortunately the rate vanishes at highest q2 where 
sensitivity to the form of f+(q2) is greatest. This is also the 
zero recoil limit where theory calculations are cleanest.
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Pole Dominance Parameterization: D→ K l ν / π l ν
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But there is a less model dependent way of dealing with f+ singularities →
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For B→π: The cut is very 
close to the maximum q2

and
f+ (q2) → ∞ as q2 → q2

max

After z mapping, the 
physical and cut region are 
far apart. The f+ (z) data is 
well fit with just a straight 
line as a polynomial.

R.J. Hill’s† New Approach to f (q2) 

Illustrate with B→πeν data [Hill (06)] 

f+ (q2)

Pφf+ (z)

10x 2.5x

-z

( ) 0 1( ) )φ( +× = +f z aP at zt

q2

q2 z

physical
cut

Hill makes a complex mapping that 
pushes the cut singularities far 
from maximum q2.

Charm data?? →†R.J. Hill hep-ph/0606023 (FPCP06)

Form factors are given by a simple 
Taylor series for  |z | << 1
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FOCUS (2004) non-parametric
D0 → K− µ+ ν analysis

The background only 
affects the highest q2 bins.
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after subtraction pole=1.9 before subtraction
( )2f q+

2 2 4(GeV / )q c

After subtracting known charm 
backgrounds, f+(q2) is an excellent 
match to a pole form with
mpole= 1.91 ± 0.04 ± 0.05 GeV/c2 or
α = 0.32  (CL 87%, 82%).
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The New Results from Belle (2006)

D0 Κl νD0 Κl ν

D0 πlνD0 πlν

1.97 ± 0.08stat ± 0.04systπlν

1.82 ± 0.04stat ± 0.03systKlν

pole mass (GeV)

0.10 ± 0.21stat ± 0.10systπlν
0.52 ± 0.08stat ± 0.06systKlν

α

modified pole

fit results

One “effective” pole

Plot courtesy of L. Widhalm

unquenched LQCD
quenched LQCD
simple pole model
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LQCD, FOCUS  & BaBar: q2 and z-trans

~100K

13K

Hill transformation gives a nearly 
linear f(Z) for D→K  data. The 
expansion should converge very 
rapidly since |z| << 1 in this decay

BaBar
FOCUS

From Hill (06)

-z

Plus some new results from CLEO-c→
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Preliminary Untagged D→K/π e ν from CLEO-c

Slightly lower than previous measurements

Neutrinos are determined by energy-momentum balance AND the 
recoil D tagging method is not used.

CKM info Modified pole

charm vector semileptonic
decays→
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IV. D → Vector l ν Decay

H0(q2), H+(q2), H-(q2) are helicity-basis form factors computable by LQCD 
A new factor h0 (q2) is needed to describe s-wave interference piece.
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KS / GS model for H± and H0
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B&K style “effective” poles

• V(q2) essentially same as B&K with one 
physical and one effective 1- poles.

• A1(q2) forced to be one effective 1+ pole

• A2(q2) has two effective 1+ poles

Versus
The traditional method.

But spectroscopic pole dominance 
should work poorly at high q2 →
Need for alternative…

K&S write H± and H0 as linear combinations of two axial and one 
vector form factors.

Two approaches are used to parameterize them:
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D+ → K∗ l+ ν
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The latest results FOCUS (2004) 
on  Ds→φ µ ν form factors are 
consistent with those for D+.

RV

time

Experimental results are very consistent with small errors. 
But must we trust/rely on spectroscopic pole dominance?  →

RV

R2
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A non-parametric Approach
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Non-parametric D+→ K−π+e+ν Form Factors (281 pb−1)

+
2 2 2( )q H q −
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2 2
0 0( )q H h q

CL = 40%

CL = 24%

CL = 59%

CL = 0.2%

2 2 2q   (GeV /c )

FOCUS model

Low q2 peaking 
of H0 and h0 is 
very apparent.

Apart from 
interference 
term the CL are 
rather good.
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Pole Mass Sensitivity in Data

MV=2.1 MA=2.5

−
2 2 2( )q H q

Constant Ai & V

+
2 2 2( )q H q

+
2 2 2( )q H q −

2 2 2( )q H q

Data fits spectroscopic poles and constant form factors 
equally well.

2 2 2
0 ( )q H q

2 2 2
0 ( )q H q
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Preliminary Z transform of PS-V decay by Hill

CLEO data
D+ → K− π+ e+ ν

Pφ  H 0(z)2q

-z

Analysis of CLEO non-parametric data  
by R.J. Hill (private communication)

The Hill- transformed 
CLEO non-parametric H0 
data seems nearly 
constant.

For D→K* decays, the z range is 4× small than for D→K.  Hence, one 
expects that the H0  data is nearly constant after transformation, which 
is confirmed in data



20

Confirming the s-wave in D+ → K− π+ e+ ν
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The disappearance of the 
interference above the pole 
implies the above phase 
relationships between the 
BW and the s-wave amplitude.

FOCUS

CLEO-c
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(1) Inclusive BF of semileptonic decays from CLEO-c.
• From 281/pb at ψ(3770), much better than the PDG 04.

Γ SL(D0)/Γ SL(D+) = 1. Known decay modes almost saturating.

(2) Active Form factor analyses for D →Pseudoscalar l ν by several 
experiments are compared to the latest unquenched light-flavor 
LQCD results, B&K model & Hill transformation.

(3) Form Factor measurements for D →V l ν from CLEO-c 281/pb and 
FOCUS.
• H+, H−, H0 appear consistent with the spectroscopic pole dominance 

model and consistent with Hill.

(4) Not covered here & Coming soon: Exclusive BF decays, rare 
decays, Ds semileptonic decays, more form factors, etc. 

(5) Looking forward to new data from B factories, CLEO-c, BES III, 
and next-next-generation charm experiments.

Summary
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Question slides



23

Search for D-wave Kπ

2 2
D F2 2

1 1No evidence for h ( )  or h ( )   q q
q q

∝ ∝

2
0 ( )DH h q×

< *m K > *m K
Guard against “phase 
cancellation” by 
showing above and 
below the K*

Add a D-wave projector

q2 GeV2
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RS-WS

MC WS

12,840 K− µ+ ν

( ) ( )m K m Kµν π µν+ −

∆m cut

FOCUS D0 → K− µ+ ν analysis

0*

Select 
decay chain
D D π+ +→

K µ ν− +

Fixed Target Neutrino closure

• Jump  to Kµ rest frame

• The D and D* mass 
constraints→ the  neutrino lies 
on a cone around the soft pion.

• Pick the φ that points the D 
closest to the primary vertex.

q2
 re

co
ns

t
q2 actual

Kµ frame

φK

µ

( )2
minχ φ

2
maxq

2
minq

Lab frame

π

• A good muon candidate.

• Cerenkov ID for K/π candidates.

• L/σ > 5 between two good 
vertices.

• D* tag required, and wrong sign 
soft π − subtraction.



25

Expected q2 Dependence of Helicity FF

Only 0 helicity components 
can survive at q2 → 0
because of V-A helicity laws.
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( )πM K

Preliminary CLEO D+ → Kπeν FOCUS D+ → Kπµν

Comparing CLEO-c & FOCUS Results
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