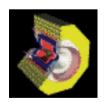
Measurement of di-lepton widths and branching fractions of heavy quarkonia at CLEO

Istvan Danko RPI Rensselaer



for the CLEO Collaboration

4th International Workshop on Heavy Quarkonium Brookhaven National Lab June 27-30, 2006

Topics covered

- In the last two years CLEO has measured Γ_{ee} and B_{ℓℓ} (as well as Γ) for several 1⁻⁻ bb (Y) and cc (ψ) states
- Bottominia:
 - $B_{\mu\mu}(Y) = B(Y(nS) \rightarrow \mu^+\mu^-)$ for n=1,2,3 PRL 94, 012001 (2005)
 - $\Gamma_{ee}(Y) = \Gamma(Y(nS) \rightarrow e^+e^-)$ for n=1,2,3
- Charmonia:
 - $B_{\ell\ell}(J/\psi) = B(J/\psi \rightarrow \ell^+\ell^-)$ for $\ell=e,\mu$
 - $\Gamma_{ee}(J/\psi) = \Gamma(J/\psi \rightarrow e^+e^-)$
 - $\Gamma_{ee}[\psi(2S)] = \Gamma(\psi(2S) \rightarrow e^+e^-)$
 - $\Gamma_{ee}[\psi(3770)] = \Gamma(\psi(3770) \rightarrow e^+e^-)$
- Left out:

PRD 71, 111103(R) (2005) PRD 73, 051103(R) (2006) PRL 96, 082004 (2006) PRL 96, 092002 (2006)

PRL 96, 092003 (2006)

See talk by J. E. Duboscq Friday morning (session BSM)!

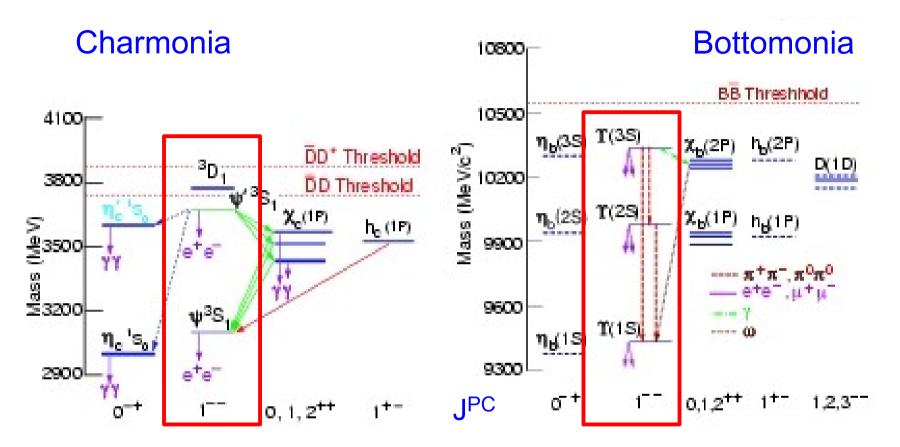
Motivation

- In general, Heavy Quarkonia play the same role in study of the strong interaction as positronium played in the study of QED
- In particular, the fundamental resonance parameters such as the dielectron widths and di-lepton branching fractions, as well as total widths of the Y and ψ are important for several reason:
 - Γ_{ee} (Γ):
 - test potential models
 - test Lattice QCD calculations (validate high precision unquenched results)

- **B**_{ll}:

- the clean signature of the di-lepton decays are used to measure transition rates between the resonances (and also the production rate of heavy quarkonia at existing and future hadron colliders: Tevatron, RHIC, LHC)
- test lepton universality and search for possible new physics beyond the SM

Heavy Quarkonia (QQ) landscape

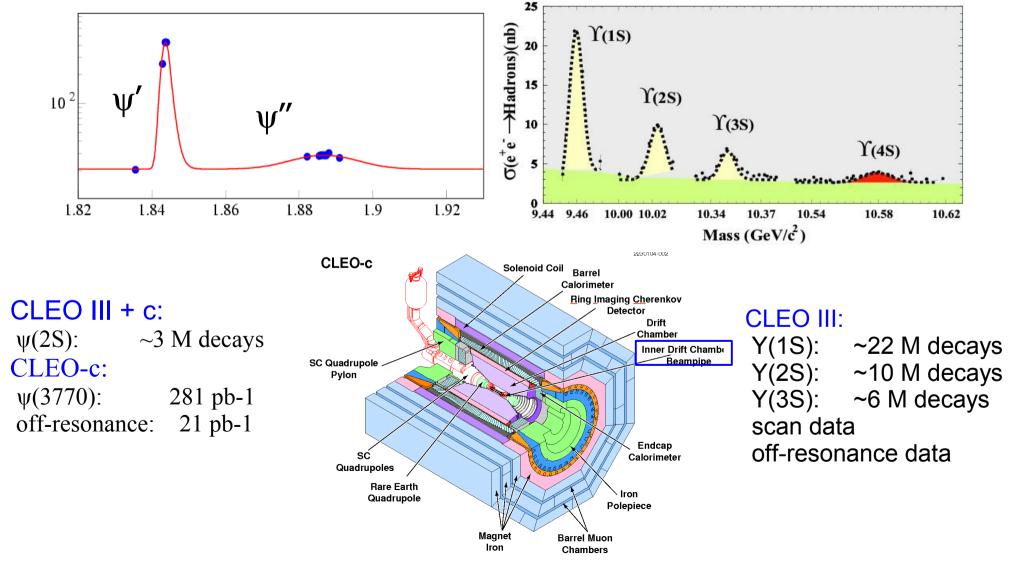


Production of $J^{PC}=1-Q\overline{Q}$ states:

- directly in annihilation: $e^+e^- \rightarrow \gamma^* \rightarrow Q\overline{Q}$,
- after initial state radiation: $e^+e^- \rightarrow \gamma e^+e^- \rightarrow \gamma Q \overline{Q}$,
- populate from higher level states: e.g. $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$

CLEO data on Y and ψ resonances

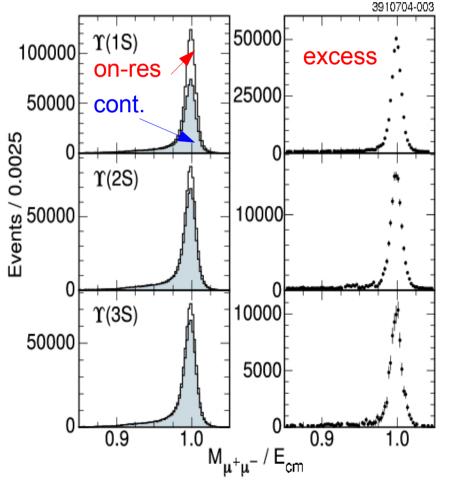
- The measurements were carried out at the CESR symmetric e⁺e⁻ collider
- Data were collected by the CLEO III and CLEO-c detector configurations from 2001-2005



$B(Y(1S,2S,3S) \rightarrow \mu^+\mu^-)$

CLEO: PRL 94, 012001 (2005)

 B_{µµ} is measured from the resonance mu-pair and hadron yields after subtracting off-resonance (continuum) yields



- Final results:
 - B(1S): $(2.49 \pm 0.02 \pm 0.07)$ % B(2S): $(2.03 \pm 0.03 \pm 0.08)$ % B(3S): $(2.39 \pm 0.07 \pm 0.10)$ %

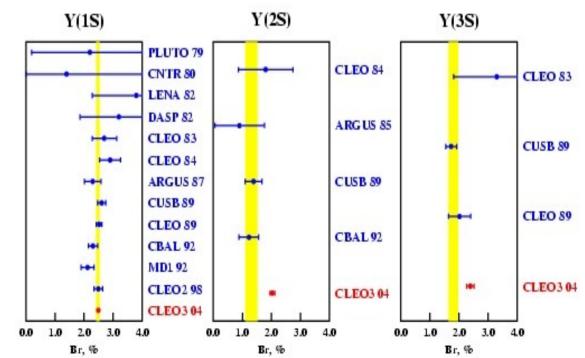
 $\delta B/B$

2.8%

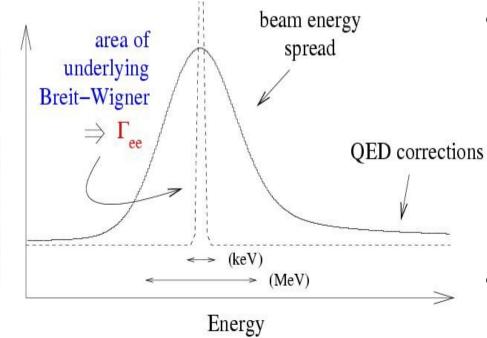
4.0%

5.1%

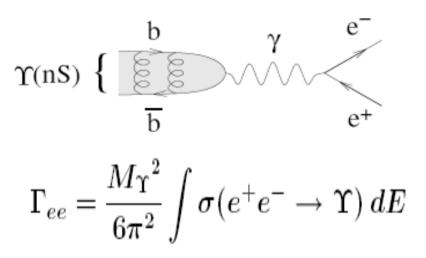
- 3-5% relative precision
- $B_{\mu\mu}$ for Y(2S) and Y(3S) is significantly larger than previous measurements



- Γ_{ee} is the partial decay width of the
 resonance to di-electrons (it is hard to
 measure directly due to the large e⁺e⁻
 →e⁺e⁻ background)
- CLEO measured Γ_{ee} using the timereversed process (e⁺e⁻ \rightarrow Y) instead of the decay (Y \rightarrow e⁺e⁻)
- The integrated production cross section is proportional to $\Gamma_{ee} = \Gamma(Y(nS) \rightarrow e^+e^-)$



CLEO: PRL 96, 092003 (2006)



- Observed line shape is a convolution of
 - BW resonance (including interference between $Y \rightarrow qq$ and $e^+e^- \rightarrow qq$)
 - Gaussian c.o.m. energy spread
 - Radiative tail due to ISR
- Area is preserved

- Scan the resonance shape as a function of c.o.m. energy (in several short independent scans – to eliminate beam energy drift):
 - 1S: 11 scans 0.27 fb-1
 - 2S: 6 scans 0.08 fb-1
 - 3S: 7 scans 0.22 fb-1

Pull

plus 0.19 fb-1, 0.41 fb-1 and 0.14fb-1 offresonance data to constrain background

From fit to the data extract integrated hadronic cross section

 $\Gamma_{ee}\Gamma_{had}/\Gamma$

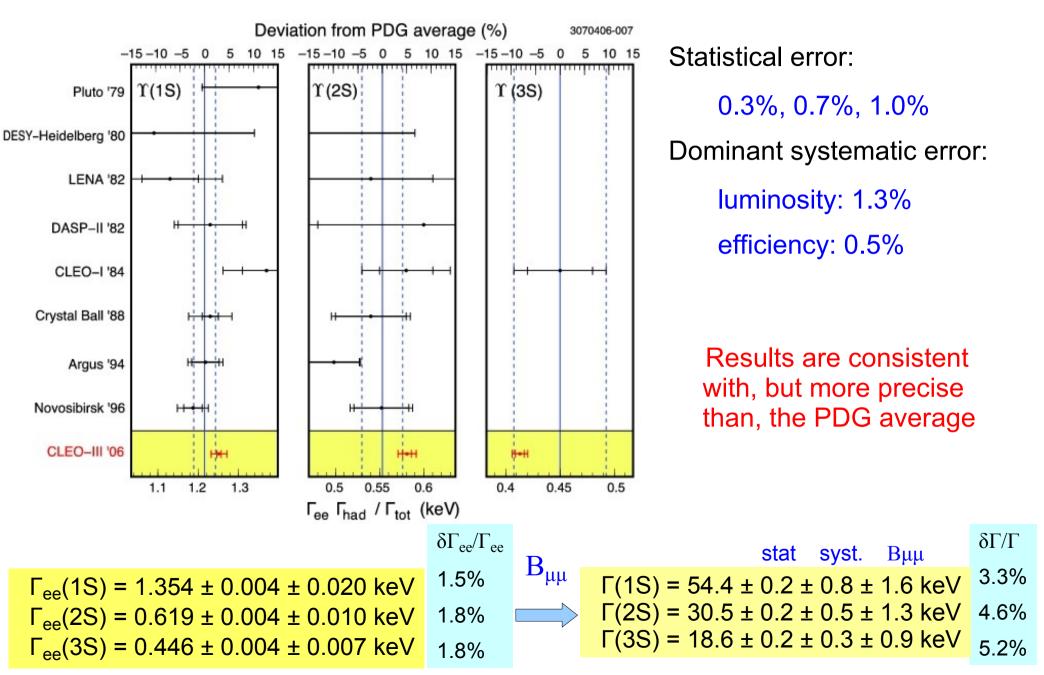
Assuming lepton universality:

 $\square \Gamma_{ee} = \Gamma_{ee} \Gamma_{had} / \Gamma / (1 - 3B_{\mu\mu})$

Then the total width:

 $\rightarrow \Gamma = \Gamma / R$

$$= \frac{1}{10^{-3}} + \frac{1}{10^{-$$



The ratio of di-electron widths:

$$\begin{split} &\Gamma_{ee}(2S)/\Gamma_{ee}(1S) \quad 0.457 \pm 0.004 \pm 0.004 \\ &\Gamma_{ee}(3S)/\Gamma_{ee}(1S) \quad 0.329 \pm 0.003 \pm 0.003 \\ &\Gamma_{ee}(3S)/\Gamma_{ee}(2S) \quad 0.720 \pm 0.009 \pm 0.007 \end{split}$$

• For comparison with unquenched Lattice QCD calculations the most precise parameter is

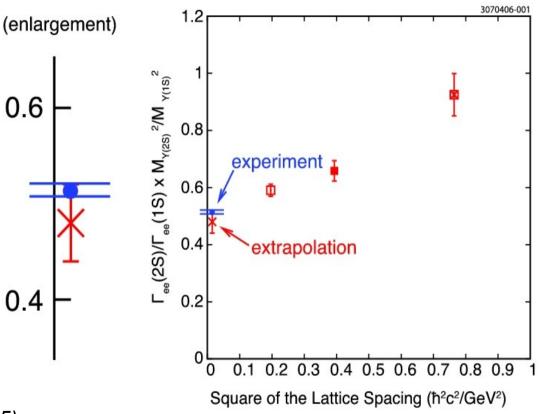
$$(\Gamma_{ee}(2S)M^{2}(2S))/(\Gamma_{ee}(1S)M^{2}(1S))$$

CLEO: 0.514 ± 0.007 LQCD: 0.48 ± 0.05

A. Gray et al. PRD 72, 094507 (2005)

They are consistent but LQCD has large (10%) error due to extrapolation

The final LQCD results are expected to have a a few percent error on the ratio and 10% error on Γ_{ee} .



$B(J/\psi \rightarrow \ell^+\ell^-)$

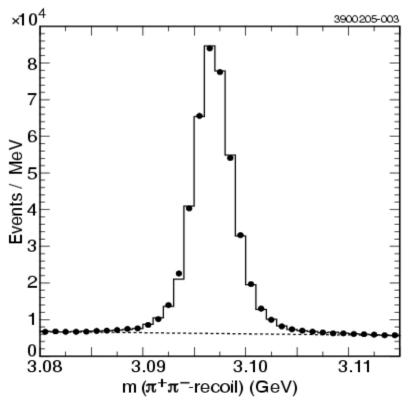
CLEO, PRD 71, 111103(R) (2005)

• Method: use 3M ψ (2S) decays to isolate $\pi^+\pi^-J/\psi$ signal by tagging the soft pions, then

 $B=N(\pi^{+}\pi^{-}J/\psi, J/\psi \rightarrow \ell^{+}\ell^{-})/N(\pi^{+}\pi^{-}J/\psi, J/\psi \rightarrow X)$

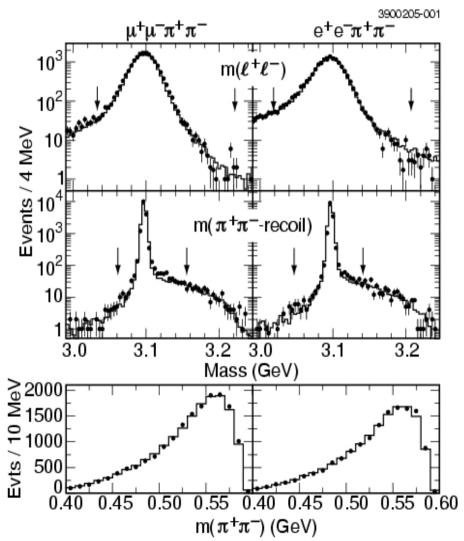
 $\pi^+\pi^-$ systematics mostly cancels

• Denominator: from fit to inclusive recoil mass $m(\pi+\pi-\text{-recoil}) - \epsilon \approx 40\%$



• Numerator: count events after additional $J/\psi \rightarrow \ell^+ \ell^-$ selection

 $\epsilon \approx 25\% \; (\pi^+\pi^-e^+e^-) = 28\% \; (\pi^+\pi^-\mu^+\mu^-)$



 $B(J/\psi \rightarrow \ell^+\ell^-)$

• Results:

$$\begin{split} B(J/\psi \to e^+e^-) &= (5.945 \pm 0.067 \pm 0.042)\% \\ B(J/\psi \to \mu^+\mu^-) &= (5.960 \pm 0.065 \pm 0.050)\% \end{split}$$

• The ratio of the ee and $\mu\mu$ branching fractions:

 $B(J/\psi \rightarrow \mu^+\mu^-)/B(J/\psi \rightarrow e^+e^-) = (99.7 \pm 1.2 \pm 0.6) \%$

consistent with lepton universality within 1.3%

• Assuming lepton universality, the average:

 $B(J/\psi \rightarrow \ell^+ \ell^-) = (5.953 \pm 0.056 \pm 0.042)\%$

 $\delta B/B = 1.18\%$

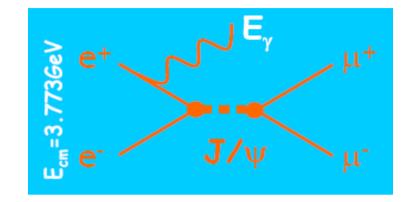
$\Gamma_{ee}(J/\psi)$

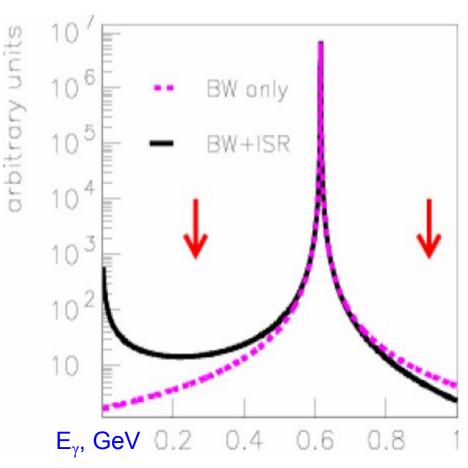
CLEO: PRD 73, 051103(R) (2006)

- Using radiative return to J/ψ in data collected at $\psi(3770)$
- Select $\mu^+\mu^-(\gamma)$ events with $M_{\mu\mu} \approx M_{J/\psi}$
- Count excess events over the nonresonant QED background
- Cross section is proportional to $B_{\mu\mu}^*\Gamma_{ee}(J/\psi)$:

$$\sigma = N_{J/\psi}/(\epsilon L) = \Gamma_{ee} * B_{\mu\mu} \int W(s,x)b(s')dx$$

- W(s,x): ISR kernel (including higher corrections), x=1-s'/s
- b(s'): BW shape (including interference with QED background), s'= $(M_{\mu\mu})^2$
- Integral is evaluated numerically using toy MC



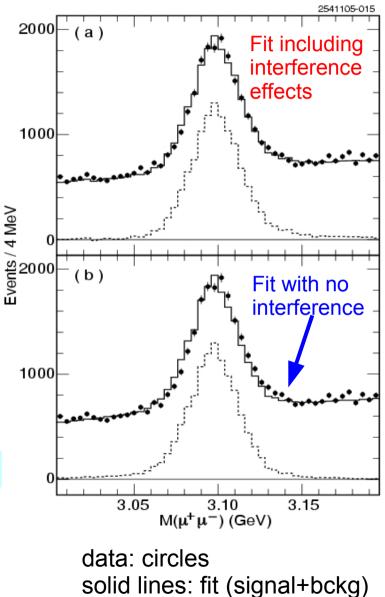


$\Gamma_{ee}(J/\psi)$

- Signal yield is extracted from fitting the invariant mass distribution of muon pairs
 - Signal ($\gamma J/\psi$) shape is derived from toy MC which convolves the measured mass resolution from data (radiative return to $\psi(2S)$, $\psi(2S) \rightarrow \pi \pi J/\psi$, $J/\psi \rightarrow \mu^+\mu^-$) with the expected effects from interference
 - Non-resonant QED background ($e^+e^- \rightarrow \gamma \mu^+ \mu^-$) is parametrized by polynomial (order 1-3)
- Fit is sensitive to interference: confidence level increases when interference is included in signal shape
- Results:

$$B_{\mu\mu}\Gamma_{ee} = 0.3384 \pm 0.0058 \pm 0.0071 \text{ keV} \qquad 2.7\%$$
using $B_{\ell\ell}$:
 $\Gamma_{ee} = 5.68 \pm 0.11 \pm 0.13 \text{ keV} \qquad 3.0\%$

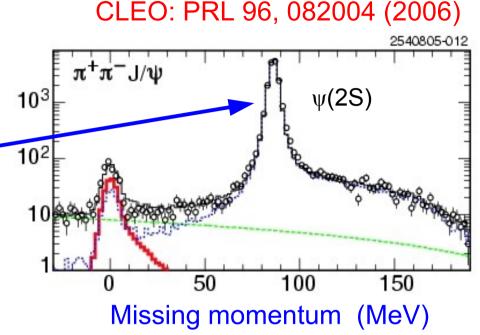
$$\Gamma = 95.5 \pm 2.4 \pm 2.4 \text{ keV} \qquad 3.6\%$$



dashed line: signal shape

$\Gamma_{ee}[\psi(2S)]$

- By-product of the search for non-DD bar decays of the $\psi(3770)$ into exclusive XJ/ψ final states (where $X=\pi^+\pi^-, \pi^0\pi^0, \eta, \pi^0$, and $J/\psi \rightarrow \ell^+\ell^-$)
- The sample is dominated by radiative return to the $\psi(2S)$: e⁺e⁻ $\rightarrow \gamma \psi(2S)$ $(\psi(2S) \rightarrow XJ/\psi)$
- The cross section $e^+e^-\rightarrow\gamma\psi(2S)\rightarrow\gamma XJ/\psi$ is proportional to $B_X^*\Gamma_{ee}(\psi(2S))$
- Fit missing momentum spectrum with
 - Signal shape for direct $\psi(3770)$ decay (from MC) red line
 - Radiative return to $\psi(2S)$ (from MC) dotted line
 - Background linear in k dashed line
- $\Gamma_{ee}(\psi(2S))$: obtained from the combined $X=\pi^+\pi^-, \pi^0\pi^0, \eta$ results and using B_X



 $\Gamma_{ee}[\psi(2S)] = (2.54 \pm 0.03 \pm 0.11) \text{ keV}$ $\delta\Gamma_{ee}/\Gamma_{ee}=4.4\%$ $\Gamma_{ee}[\psi(2S)]/\Gamma_{ee}(J/\psi) = 0.45 \pm 0.01 \pm 0.02$

5.0%

Γ_{ee}[ψ(3770)]

CLEO: PRL 96, 092002 (2006)

• CLEO measured the total hadronic cross section of the $\psi(3770)$ in order to explore the possible gap between DD and total hadronic cross section:

 $\sigma_{\psi(3770)} = (6.38 \pm 0.08 \ ^{+0.41} \ _{-0.30}) \ nb$

consistent with DD cross section (not much room for non-DD decays):

$$\sigma_{\psi(3770)} - \sigma_{DD} = (-0.01 \pm 0.08 \ ^{+0.41} - 0.30) \text{ nb}$$

• From the observed $\sigma_{\psi(3770)}$ as well as M and Γ from the PDG we can get the Born level cross section at the peak of the resonance ($\sqrt{s}=M$) and then Γ_{ee} from the relativistic B-W resonance shape:

$$\Gamma_{ee} = [\sigma^{obs}(\sqrt{s}=3773)/f] * h * M^2 * \Gamma / (12\pi)$$

 $h = 1.078 \,\, {}^{+0.152}_{-0.006} \,\, {}^{+0.055}_{-0.038} \qquad and \qquad f = 0.77 \pm 0.03$

$$\Gamma_{ee} = (204 \pm 3 + 41_{-27}) \text{ eV} \text{ (CLEO)}$$

$\Gamma_{\rm ee} = (260 \pm 40) {\rm eV}$	(PDG'04)
$\Gamma_{\rm ee} = (251 \pm 26 \pm 11) {\rm eV}$	(BES: hep-ex/0605107)

Summary of di-lepton results from CLEO

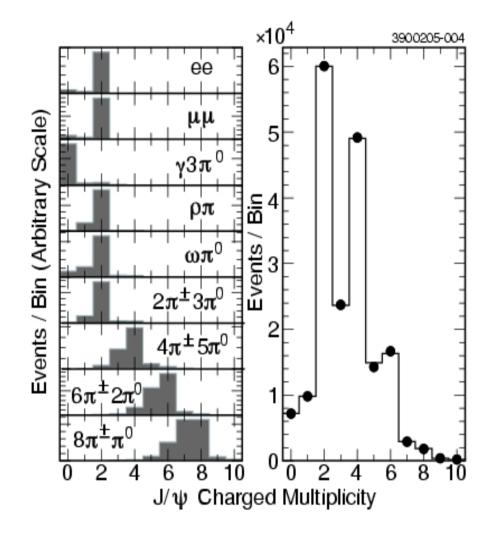
 Lots of new measurements of di-lepton widths and branching fractions from CLEO

	Β _{μμ} (Β _{ℓℓ}) [%]	Γ _{ee} [keV]	Γ = Γ _{ee} /B _{ℓℓ} [keV]
J/ψ	5.953 ± 0.056 ± 0.042	5.68 ± 0.11 ± 0.13	95.5 ± 2.4 ± 2.4
ψ(2S)		2.54 ± 0.03 ± 0.11	
Ψ(3770)		0.204 ± 0.003 +0.041-0.027	
Y(1S)	2.49 ± 0.02 ± 0.07	1.354 ± 0.004 ± 0.020	54.4 ± 0.2 ± 0.8 ± 1.6
Y(2S)	2.03 ± 0.03 ± 0.08	0.619 ± 0.004 ± 0.010	30.5 ± 0.2 ± 0.5 ± 1.3
Y(3S)	2.39 ± 0.07 ± 0.10	0.446 ± 0.004 ± 0.007	18.6 ± 0.2 ± 0.3 ± 0.9

Backup Slides

$B(J/\psi \rightarrow \ell^+\ell^-)$

- Fitting $\pi + \pi$ recoil mass from $\pi + \pi$ -X:
 - signal shape from clean π+π-ℓ+ℓfinal state is used (to get the right momentum resolution)
 - background: 2nd order polynomial
- Efficiency ε_X : ~40%
 - depends slightly on charged and neutral multiplicity of J/ψ final state (X)
 - variation is $\sim 2\%$ (relative)
- Create a mixture of MC using specific exclusive final states to reproduce the charged multiplicity observed in data (dots)
 - BF of ee, $\mu\mu$, $\rho\pi$ is fixed in the mixture
 - BF of other modes are let to float in the fit to the multiplicity distribution



 Fit the recoil mass of this mixed MC with shape from the shape from π+πℓ+ℓ- MC to get ε_X.

$\Gamma_{ee}[\psi(3770)]$

• The Born-level cross section at the \sqrt{s} =M mass is related to that at \sqrt{s} =3773 MeV via the relativistic Breit-Wigner formula

$$\sigma_{\text{Born}}(\sqrt{s}) = 12\pi\Gamma_{\text{ee}}\Gamma / \left[(s-M^2)^2 + M^2\Gamma^2\right]$$

- i.e. $\sigma_{Born}(\sqrt{s}=M)/\sigma_{Born}(\sqrt{s}=3770) = h = 1.078 + 0.152 + 0.006 + 0.055 + 0.038$
- In addition, the observed cross section is smaller than the Born-level cross section due to radiative corrections (except vacuum polarization which is absorbed into Γee):

$$\sigma^{obs}(\sqrt{s}=3773)/\sigma_{Born}(\sqrt{s}=3773) = f = 0.77 \pm 0.03$$
 (Particle Data Group)

 $\Delta \sqrt{s} = 1 \text{ MeV}$

 $\Delta M, \Delta \Gamma$

• Then $\Gamma_{ee}[\psi(3770)]$ can be extracted using the Breit-Wigner formula applied at $\sqrt{s}=M$:

$$\Gamma_{ee} = [\sigma^{obs}(\sqrt{s}=3773)/f] * h * M^2 * \Gamma / (12\pi)$$