Measurement of di-lepton widths and branching fractions of heavy quarkonia at CLEO

Istvan Danko RPI

(4) Rensselaer

for the CLEO Collaboration

$4^{\text {th }}$ International Workshop on Heavy Quarkonium
Brookhaven National Lab
June 27-30, 2006

Topics covered

- In the last two years CLEO has measured Γ_{ee} and $\mathrm{B}_{\ell \ell}$ (as well as Γ) for several 1-- bb (Y) and cc (ψ) states
- Bottominia:

$$
\begin{array}{ll}
-\mathrm{B}_{\mu \mu}(\mathrm{Y})=\mathrm{B}\left(\mathrm{Y}(\mathrm{nS}) \rightarrow \mu^{+} \mu^{-}\right) \text {for } \mathrm{n}=1,2,3 & \text { PRL 94, 012001 (2005) } \\
-\Gamma_{\mathrm{ee}}(\mathrm{Y})=\Gamma\left(\mathrm{Y}(\mathrm{nS}) \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right) \text {for } \mathrm{n}=1,2,3 & \text { PRL 96, 092003 (2006) }
\end{array}
$$

- Charmonia:

$$
\begin{align*}
& -\mathrm{B}_{\ell(}(\mathrm{J} / \psi)=\mathrm{B}\left(\mathrm{~J} / \psi \rightarrow \ell^{+} \ell-\right) \text { for } \ell=\mathrm{e}, \mu \tag{R}\\
& -\Gamma_{\mathrm{ee}}(\mathrm{~J} / \psi)=\Gamma\left(\mathrm{J} / \psi \rightarrow \mathrm{e}^{+} \mathrm{e}-\right) \\
& -\quad \Gamma_{\mathrm{ee}}[\psi(2 \mathrm{~S})]=\Gamma\left(\psi(2 \mathrm{~S}) \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right) \\
& -\quad \Gamma_{\mathrm{ee}}[\psi(3770)]=\Gamma\left(\psi(3770) \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)
\end{align*}
$$

PRD 73, 051103(R) (2006)
PRL 96, 082004 (2006)
PRL 96, 092002 (2006)

- Left out:
$-\mathrm{B}_{\tau \tau}(\mathrm{Y})=\mathrm{B}\left(\mathrm{Y}(\mathrm{nS}) \rightarrow \tau^{+} \tau^{-}\right)$for $\mathrm{n}=1,2,3$
See talk by J. E. Duboscq
Friday morning (session BSM)!

Motivation

- In general, Heavy Quarkonia play the same role in study of the strong interaction as positronium played in the study of QED
- In particular, the fundamental resonance parameters such as the dielectron widths and di-lepton branching fractions, as well as total widths of the Y and ψ are important for several reason:
- $\Gamma_{\text {ee }}(\Gamma)$:
- test potential models
- test Lattice QCD calculations (validate high precision unquenched results)
- B_{ℓ} :
- the clean signature of the di-lepton decays are used to measure transition rates between the resonances (and also the production rate of heavy quarkonia at existing and future hadron colliders: Tevatron, RHIC, LHC)
- test lepton universality and search for possible new physics beyond the SM

Heavy Quarkonia ($Q \bar{Q}$) landscape

Production of JPC=1-- Q \bar{Q} states:

- directly in annihilation: $\mathrm{e}^{+} \mathrm{e}-\rightarrow \gamma^{*} \rightarrow \mathrm{Q} \overline{\mathrm{Q}}$,
- after initial state radiation: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mathrm{Q} \overline{\mathrm{Q}}$,
- populate from higher level states: e.g. $\psi(2 \mathrm{~S}) \rightarrow \pi^{+} \pi-\mathrm{J} / \psi$

CLEO data on Y and ψ resonances

- The measurements were carried out at the CESR symmetric $\mathrm{e}^{+} \mathrm{e}-\mathrm{collider}$
- Data were collected by the CLEO III and CLEO-c detector configurations from 2001-2005

$\mathrm{B}\left(\mathrm{Y}(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S}) \rightarrow \mu^{+} \mu^{-}\right)$

CLEO: PRL 94, 012001 (2005)

- $\mathrm{B}_{\mu \mathrm{i}}$ is measured from the resonance mu-pair and hadron yields after subtracting off-resonance (continuum) yields

- Final results:

$$
\delta \mathrm{B} / \mathrm{B}
$$

$$
\begin{array}{ll}
\text { B(1S): }(2.49 \pm 0.02 \pm 0.07) \% & 2.8 \% \\
\text { B(2S): }(2.03 \pm 0.03 \pm 0.08) \% & 4.0 \% \\
\text { B(3S): }(2.39 \pm 0.07 \pm 0.10) \% & 5.1 \%
\end{array}
$$

- 3-5\% relative precision
- $\mathrm{B}_{\mu \mu}$ for $\mathrm{Y}(2 \mathrm{~S})$ and $\mathrm{Y}(3 \mathrm{~S})$ is significantly larger than previous measurements

$\Gamma_{e e[Y(1 S, 2 S, 3 S)]}$

- $\Gamma_{e e}$ is the partial decay width of the resonance to di-electrons (it is hard to measure directly due to the large $\mathrm{e}^{+} \mathrm{e}^{-}$ $\rightarrow \mathrm{e}^{+} \mathrm{e}$ - background)
- CLEO measured $\Gamma_{\text {ee }}$ using the timereversed process ($\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}$) instead of the decay ($\mathrm{Y} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$)
- The integrated production cross section is
 proportional to $\Gamma_{\mathrm{ee}}=\Gamma\left(\mathrm{Y}(\mathrm{nS}) \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)$

Energy

- Observed line shape is a convolution of
- BW resonance (including interference between $\mathrm{Y} \rightarrow \mathrm{qq}$ and $\left.\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{qq}\right)$
- Gaussian c.o.m. energy spread
- Radiative tail due to ISR
- Area is preserved

$\Gamma_{e e}[\mathrm{Y}(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})]$

- Scan the resonance shape as a function of - From fit to the data extract c.o.m. energy (in several short independent integrated hadronic cross section scans - to eliminate beam energy drift):

1S: 11 scans $-0.27 \mathrm{fb}-1$
2S: 6 scans $-0.08 \mathrm{fb}-1$
3S: 7 scans $-0.22 \mathrm{fb}-1$

- plus $0.19 \mathrm{fb}-1,0.41 \mathrm{fb}-1$ and $0.14 \mathrm{fb}-1$ offresonance data to constrain background
$\Longrightarrow \Gamma_{\mathrm{ee}} \Gamma_{\text {had }} / \Gamma$
- Assuming lepton universality:

$$
\longmapsto \Gamma_{\mathrm{ee}}=\Gamma_{\mathrm{ee}} \Gamma_{\mathrm{had}} / \Gamma /\left(1-3 \mathrm{~B}_{\mu \mu}\right)
$$

- Then the total width:

$$
\Longrightarrow \Gamma=\Gamma_{\mathrm{ee}} / \mathrm{B}_{\mu \mu}
$$

3070406-003

Center-of-mass Energy (GeV)

Background including $\mathrm{Y} \rightarrow \tau \tau$

$\Gamma_{e e}[\mathrm{Y}(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})]$

Deviation from PDG average (\%) 3070406-007

Statistical error:

$$
0.3 \%, 0.7 \%, 1.0 \%
$$

Dominant systematic error:
luminosity: 1.3%
efficiency: 0.5\%

Results are consistent with, but more precise than, the PDG average

	$\delta \Gamma_{\mathrm{ee}} / \Gamma_{\text {ee }}$		stat syst. $\mathrm{B} \mu \mu$	бГ/Г
$\Gamma_{\text {ee }}(1 \mathrm{~S})=1.354 \pm 0.004 \pm 0.020 \mathrm{keV}$	1.5\%	$\mathrm{B}_{\mu \mu}$	$\Gamma(1 \mathrm{~S})=54.4 \pm 0.2 \pm 0.8 \pm 1.6 \mathrm{keV}$	3.3\%
$\Gamma_{\text {ee }}(2 \mathrm{~S})=0.619 \pm 0.004 \pm 0.010 \mathrm{keV}$	1.8\%		$\Gamma(2 \mathrm{~S})=30.5 \pm 0.2 \pm 0.5 \pm 1.3 \mathrm{keV}$	4.6\%
$\Gamma_{\text {ee }}(3 S)=0.446 \pm 0.004 \pm 0.007 \mathrm{keV}$	1.8\%		$\Gamma(3 \mathrm{~S})=18.6 \pm 0.2 \pm 0.3 \pm 0.9 \mathrm{keV}$	5.2\%

$\Gamma_{e e}[\mathrm{Y}(1 \mathrm{~S}, 2 \mathrm{~S}, 3 \mathrm{~S})]$

The ratio of di-electron widths:
$\Gamma_{\mathrm{ee}}(2 S) / \Gamma_{\mathrm{ee}}(1 \mathrm{~S})$
$\Gamma_{\mathrm{ee}}(3 S) / \Gamma_{\mathrm{ee}}(1 \mathrm{~S})$
$0.357 \pm 0.004 \pm 0.004$
$\Gamma_{\mathrm{ee}}(3 S) / \Gamma_{\mathrm{ee}}(2 S)$
$0.720 \pm 0.003 \pm 0.003$

- For comparison with unquenched Lattice QCD calculations the most precise parameter is

$$
\left(\Gamma_{\mathrm{ee}}(2 \mathrm{~S}) \mathrm{M}^{2}(2 \mathrm{~S})\right) /\left(\Gamma_{\mathrm{ee}}(1 \mathrm{~S}) \mathrm{M}^{2}(1 \mathrm{~S})\right)
$$

CLEO: $\quad 0.514 \pm 0.007$
LQCD: $\quad 0.48 \pm 0.05$

Square of the Lattice Spacing ($\hbar^{2} \mathrm{c}^{2} / \mathrm{GeV}^{2}$)
A. Gray et al. PRD 72, 094507 (2005)

- They are consistent but LQCD has large (10\%) error due to extrapolation

The final LQCD results are expected to have a a few percent error on the ratio and 10% error on $\Gamma_{\text {ee }}$.

$B\left(\mathrm{~J} / \psi \rightarrow \ell^{+} \ell^{-}\right)$

CLEO, PRD 71, 111103(R) (2005)

- Method: use $3 \mathrm{M} \psi(2 \mathrm{~S})$ decays to isolate $\pi^{+} \pi^{-\mathrm{J} /} / \psi$ signal by tagging the soft pions, then $\mathrm{B}=\mathrm{N}\left(\pi^{+} \pi^{-\mathrm{J}} / \psi, \mathrm{J} / \psi \rightarrow \ell^{+} \ell\right) / \mathrm{N}\left(\pi^{+} \pi-\mathrm{J} / \psi, \mathrm{J} / \psi \rightarrow \mathrm{X}\right)$ $\pi^{+} \pi$ - systematics mostly cancels
- Denominator: from fit to inclusive recoil mass $\mathrm{m}(\pi+\pi-$-recoil $)-\varepsilon \approx 40 \%$

- Numerator: count events after additional $\mathrm{J} / \psi \rightarrow \ell^{+} \ell-$ selection

$$
\varepsilon \approx 25 \%\left(\pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}\right) \quad 28 \%\left(\pi^{+} \pi^{-} \mu^{+} \mu^{-}\right)
$$

$B(J / \psi \rightarrow \ell+\ell)$

- Results:

$$
\begin{aligned}
& \mathrm{B}\left(\mathrm{~J} / \psi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)=(5.945 \pm 0.067 \pm 0.042) \% \\
& \mathrm{~B}\left(\mathrm{~J} / \psi \rightarrow \mu^{+} \mu^{-}\right)=(5.960 \pm 0.065 \pm 0.050) \%
\end{aligned}
$$

- The ratio of the ee and $\mu \mu$ branching fractions:

$$
\mathrm{B}\left(\mathrm{~J} / \psi \rightarrow \mu^{+} \mu^{-}\right) / \mathrm{B}\left(\mathrm{~J} / \psi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)=(99.7 \pm 1.2 \pm 0.6) \%
$$

consistent with lepton universality within 1.3%

- Assuming lepton universality, the average:

$$
\mathrm{B}\left(\mathrm{~J} / \psi \rightarrow \ell^{+} \ell^{-}\right)=(5.953 \pm 0.056 \pm 0.042) \%
$$

$\Gamma_{\mathrm{ee}}(\mathrm{J} / \Psi)$

CLEO: PRD 73, 051103(R) (2006)

- Using radiative return to J / ψ in data collected at $\psi(3770)$
- Select $\mu^{+} \mu-(\gamma)$ events with $\mathrm{M}_{\mu \mu} \approx \mathrm{M}_{\mathrm{J} / \psi}$
- Count excess events over the nonresonant QED background
- Cross section is proportional to $\mathrm{B}_{\mu \mu} * \Gamma_{\mathrm{ee}}(\mathrm{J} / \psi)$:
$\sigma=\mathrm{N}_{\mathrm{J} / \psi} /(\varepsilon \mathrm{L})=\Gamma_{\mathrm{ee}} * \mathrm{~B}_{\mu \mu} \int \mathrm{W}(\mathrm{s}, \mathrm{x}) \mathrm{b}\left(\mathrm{s}^{\prime}\right) \mathrm{dx}$
- W(s,x): ISR kernel (including higher corrections), $\mathrm{x}=1-\mathrm{s} / \mathrm{s}$
- b(s'): BW shape (including interference with QED background), $\mathrm{s}^{\prime}=\left(\mathrm{M}_{\mu \mu}\right)^{2}$
- Integral is evaluated numerically using toy MC

$\Gamma_{\mathrm{ee}}(\mathrm{J} / \Psi)$

- Signal yield is extracted from fitting the invariant mass distribution of muon pairs
- Signal $(\gamma \mathrm{J} / \psi)$ shape is derived from toy MC which convolves the measured mass resolution from data (radiative return to $\psi(2 \mathrm{~S})$, $\left.\psi(2 \mathrm{~S}) \rightarrow \pi \pi \mathrm{J} / \psi, \mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}\right)$with the expected effects from interference
- Non-resonant QED background ($\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mu^{+} \mu^{-}$) is parametrized by polynomial (order 1-3)
- Fit is sensitive to interference: confidence level increases when interference is included in signal shape
- Results:

$$
\mathrm{B}_{\mu \mu} \Gamma_{\mathrm{ee}}=0.3384 \pm 0.0058 \pm 0.0071 \mathrm{keV}
$$

using $\mathrm{B}_{\ell \ell}$:

$$
\begin{align*}
& \Gamma_{\mathrm{ee}}=5.68 \pm 0.11 \pm 0.13 \mathrm{keV} \\
& \Gamma=95.5 \pm 2.4 \pm 2.4 \mathrm{keV}
\end{align*}
$$

data: circles
solid lines: fit (signal+bckg) dashed line: signal shape

$\Gamma_{\text {ee }}[\psi(2 S)]$

- By-product of the search for non-DD bar CLEO: PRL 96, 082004 (2006) decays of the $\psi(3770)$ into exclusive XJ/ ψ final states (where $\mathrm{X}=\pi^{+} \pi^{-}, \pi^{0} \pi^{0}, \eta, \pi^{0}$, and $\mathrm{J} / \psi \rightarrow \ell+\ell-)$
- The sample is dominated by radiative return to the $\psi(2 \mathrm{~S}): \mathrm{e}^{+} \mathrm{e}-\rightarrow \gamma \psi(2 \mathrm{~S})$
$(\psi(2 S) \rightarrow \mathrm{XJ} / \psi)$
- The cross section $\mathrm{e}^{+} \mathrm{e}-\rightarrow \gamma \psi(2 \mathrm{~S}) \rightarrow \gamma \mathrm{XJ} / \psi$ is proportional to $\mathrm{B}_{\mathrm{X}}{ }^{*} \Gamma_{\text {ee }}(\psi(2 \mathrm{~S}))$
- Fit missing momentum spectrum with
- Signal shape for direct $\psi(3770)$ decay (from MC) - red line
Radiative return to $\psi(2 S)$ (from MC) dotted line
- Background linear in k - dashed line

$$
\begin{array}{r}
\Gamma_{\mathrm{ee}}[\psi(2 \mathrm{~S})]=(2.54 \pm 0.03 \pm 0.11) \mathrm{keV} \\
\delta \Gamma_{\mathrm{ee}} / \Gamma_{\mathrm{ee}}=4.4 \%
\end{array}
$$

$$
\Gamma_{\mathrm{ee}}[\psi(2 \mathrm{~S})] / \Gamma_{\mathrm{ee}}(\mathrm{~J} / \psi)=0.45 \pm 0.01 \pm 0.02
$$

- $\Gamma_{\mathrm{ee}}(\psi(2 \mathrm{~S}))$: obtained from the combined

$\Gamma_{\mathrm{ee}}[\psi(3770)]$

CLEO: PRL 96, 092002 (2006)

- CLEO measured the total hadronic cross section of the $\psi(3770)$ in order to explore the possible gap between DD and total hadronic cross section:

$$
\sigma_{\psi(3770)}=\left(6.38 \pm 0.08^{+0.41}{ }_{-0.30}\right) \mathrm{nb}
$$

consistent with DD cross section (not much room for non-DD decays):

$$
\sigma_{\psi(3770)}-\sigma_{\mathrm{DD}}=\left(-0.01 \pm 0.08^{+0.41}-0.30\right) \mathrm{nb}
$$

- From the observed $\sigma_{\psi(3770)}$ as well as M and Γ from the PDG we can get the Born level cross section at the peak of the resonance ($\mathrm{V}_{\mathrm{s}}=\mathrm{M}$) and then $\Gamma_{\text {ee }}$ from the relativistic B-W resonance shape:

$$
\begin{gathered}
\Gamma_{\mathrm{ee}}=\left[\sigma^{\mathrm{obs}(\sqrt{\mathrm{~s}}=3773) / \mathrm{f}] * \mathrm{~h} * \mathrm{M}^{2} * \Gamma /(12 \pi)} \begin{array}{c}
\mathrm{h}=1.078^{+0.152_{-0.006}^{+0.055-0.038}} \quad \text { and } \mathrm{f}=0.77 \pm 0.03 \\
\Gamma_{\mathrm{ee}}=\left(204 \pm 3^{+41}{ }_{-27}\right) \mathrm{eV}(\mathrm{CLEO}) \\
\Gamma_{\mathrm{ee}}=(260 \pm 40) \mathrm{eV} \\
\Gamma_{\mathrm{ee}}=(251 \pm 26 \pm 11) \mathrm{eV} \\
\text { (PDG'04) } \\
\text { (BES: hep-ex/0605107) }
\end{array}\right.
\end{gathered}
$$

Summary of di-lepton results from CLEO

- Lots of new measurements of di-lepton widths and branching fractions from CLEO

	$\mathrm{B}_{\mu \mu}\left(\mathrm{B}_{\ell}\right)[\%]$	$\Gamma_{\text {ee }}[\mathrm{keV}]$	$\Gamma=\Gamma_{\text {ee }} / B_{\text {ll }}[\mathrm{keV}]$
J/ $/$	$5.953 \pm 0.056 \pm 0.042$	$5.68 \pm 0.11 \pm 0.13$	$95.5 \pm 2.4 \pm 2.4$
$\psi(2 S)$		$2.54 \pm 0.03 \pm 0.11$	
$\Psi(3770)$		$0.204 \pm 0.003{ }^{+0.041}{ }_{-0.027}$	
Y(1S)	$2.49 \pm 0.02 \pm 0.07$	$1.354 \pm 0.004 \pm 0.020$	$54.4 \pm 0.2 \pm 0.8 \pm 1.6$
Y(2S)	$2.03 \pm 0.03 \pm 0.08$	$0.619 \pm 0.004 \pm 0.010$	$30.5 \pm 0.2 \pm 0.5 \pm 1.3$
$Y(3 S)$	$2.39 \pm 0.07 \pm 0.10$	$0.446 \pm 0.004 \pm 0.007$	$18.6 \pm 0.2 \pm 0.3 \pm 0.9$

Backup Slides

$B(J / \psi \rightarrow \ell+\ell)$

- Fitting $\pi+\pi$ - recoil mass from $\pi+\pi$-X:
- signal shape from clean $\pi+\pi-\ell+\ell-$ final state is used (to get the right momentum resolution)
- background: $2^{\text {nd }}$ order polynomial
- Efficiency $\varepsilon_{\mathrm{X}}: \sim 40 \%$
- depends slightly on charged and neutral multiplicity of J / ψ final state (X)
- variation is $\sim 2 \%$ (relative)
- Create a mixture of MC using specific exclusive final states to reproduce the charged multiplicity observed in data (dots)
- BF of ee, $\mu \mu, \rho \pi$ is fixed in the mixture
- BF of other modes are let to float in the fit to the multiplicity distribution

- Fit the recoil mass of this mixed MC with shape from the shape from $\pi+\pi-$ $\ell+\ell-\mathrm{MC}$ to get ε_{X}.

$\Gamma_{\mathrm{ee}}[\psi(3770)]$

- The Born-level cross section at the $\sqrt{ } \mathrm{s}=\mathrm{M}$ mass is related to that at $\sqrt{\mathrm{s}}^{\mathrm{s}}=3773$ MeV via the relativistic Breit-Wigner formula

$$
\begin{gathered}
\sigma_{\text {Born }}(\sqrt{ } s)=12 \pi \Gamma_{\mathrm{ee}} \Gamma /\left[\left(\mathrm{s}-\mathrm{M}^{2}\right)^{2}+\mathrm{M}^{2} \Gamma^{2}\right] \\
\text { i.e. } \quad \sigma_{\text {Born }}\left(V_{\mathrm{s}}=\mathrm{M}\right) / \sigma_{\text {Born }}(\sqrt{ } \mathrm{V}=3770)=\mathrm{h}=1.078 \underbrace{+0.152}_{\Delta \mathbf{M}, \boldsymbol{\Delta} \Gamma}-0.006 \\
\underbrace{0.055_{-0.038}}_{\Delta \sqrt{ }=1 \mathrm{MeV}}
\end{gathered}
$$

- In addition, the observed cross section is smaller than the Born-level cross section due to radiative corrections (except vacuum polarization which is absorbed into Гee):
- Then $\Gamma_{\text {ee }}[\psi(3770)]$ can be extracted using the Breit-Wigner formula applied at $\sqrt{ } \mathrm{s}=\mathrm{M}$:

$$
\Gamma_{\mathrm{ee}}=\left[\sigma^{\mathrm{obs}}\left(\mathrm{~V}_{\mathrm{s}}=3773\right) / \mathrm{f}\right] * \mathrm{~h} * \mathrm{M}^{2} * \Gamma /(12 \pi)
$$

