

UNIVERSALITY & LFV IN UPSILON DECAYS AT CLEO

J.E. DUBOSCQ

CORNELL JED@MAIL.LEPP.CORNELL.EDU

FOR THE CLEO COLLABORATION

QWG06 JUNE 30 2006

TOPICS

- **CLEOIII DETECTOR AND DATA**
- A SEARCH FOR THE LEPTON FLAVOR VIOLATING DECAY $\Upsilon \rightarrow \mu T$
- Test of Lepton Universality in $\Upsilon {\rightarrow} TT$ and $\Upsilon {\rightarrow} \mu \mu$

THE CLEOIII DETECTOR

CLEO UPSILON DATA

CLEOIII <u>HAD</u> THE LARGEST WORLD SAMPLE OF CLEAN Y EVENTS BELOW B THRESHOLD (CF BELLE 3S)

Also has offresonance data + scan data + data at Υ (5S)

SEARCH FOR LFV VIOLATION IN $\Upsilon \rightarrow \mu T$

LEPTON FLAVOR VIOLATION

WE DON'T ANNIHILATE WHEN WE SHAKE HANDS.

- BARYON ASYMMETRY GENERATED VIA SAKHAROV CONDITIONS: B & C & CP VIOLATION, + UNIVERSE OUT OF THERMAL EQUILIBRIUM FOR A WHILE
- **B**, L ARE ACCIDENTAL SYMMETRIES OF **SM**
- B-L IS HOWEVER CONSERVED

MAYBE B IS VIOLATED BECAUSE L IS VIOLATED AND MAYBE THIS IS RELATED TO LFV ?

LFV FOR T AND Y DECAYS

T DECAY LFV TALKS ABOUT Y LFV

S.NUSSINOV, R.D.PECCEI, X.M. ZHANG PRD63(2000), 016003

 $B(T \rightarrow 3 \mu) < 10^{-6} \Rightarrow B(\Upsilon \rightarrow \mu T) < 10^{-2}$

LEPTOQUARK

LFV FOR T, Y DECAYS

Z. SILAGADZE, PHYS. SCRIPTA 64(2001), 128

GENERIC 4 FERMION COUPLING α_N at scale Λ ADDED TO SM TO GET LFV

$$\frac{B(\Upsilon \to \mu \tau)}{B(\Upsilon \to \mu \mu)} \propto (\alpha_N / \alpha)^2 (M_{\Upsilon} / \Lambda)^4$$

LFV: THE ANALYSIS

- SEARCH FOR $\Upsilon \rightarrow \mu T$, $T \rightarrow eVV$
- **2** TRACKS: μ (MUON ID), E (E/P, DE/DX)

μ near Ebeam

- EXTENDED MAX LIKELIHOOD $\mathcal{L} = e^{-N_{evnt}} \prod_{evnt} (\Sigma N_i \mathcal{P}_i(X|S))$
- **Use Product PDF:** $\mathcal{P}(p_{\mu}) \times \mathcal{P}(p_{e}) \times \mathcal{P}(dE/dx(e)) \times \mathcal{P}(E/p(e))$
- Sum over: Signal LFV decay \oplus TT \oplus $\mu\mu$ (Y) w/ hard Y \oplus $\mu\mu$ with μ decay to electron

Υ(4S), OFF RES USED AS CALIBRATION & CONTROL SAMPLES

BACKGROUND & SIGNAL REGIONS

FITS TO $\Upsilon(1S)$ DATA

μμ hard γ

 $\mu\mu$, decay in flight

PRELIMINARY LFV RESULTS

RESONANCE	Y(1S)	Y(2S)	Y(3S)
EFFICIENCY	8.9%	8.9%	8.9%
NEVENTS	< 10.0	< 10.7	< 8.5
$B(\Upsilon \rightarrow \mu \tau)(10^{-6})$	< 6.2	< 25	< 22
$B(\Upsilon \rightarrow \mu \tau)/B(\Upsilon \rightarrow \mu \mu)$	< 0.023%	< 0.17%	< 0.13%

ALL LIMITS ARE 90% CL UL

- LARGEST SYST: PDF SHAPES & CORRELATIONS
- FIRST LIMITS ON $\Upsilon \rightarrow T\mu$
- THESE BRS SET A LOWER LIMIT OF ≈ 1 TEV ON GENERIC LFV SCALE (ASSUMING STRONG COUPLING)

UNIVERSALITY IN Y DECAYS WITH $\Upsilon \rightarrow \mu\mu$, TT

$\gamma \rightarrow \tau \tau$ Motivation

- CLEO HAS MEASURED B($\Upsilon(NS) \rightarrow \mu \mu$), $\Gamma(ee \rightarrow \Upsilon(NS))$ N=1,2,3 - SEE TALK BY ISTVAN DANKO
- $\checkmark \uparrow \rightarrow TT$ ROUNDS OUT THIS SERIES
- **B**($\Upsilon(1S) \rightarrow TT$) KNOWN TO ≈ 10 % IN PDG
- $\Upsilon(2S) \rightarrow TT$ "OBSERVED"

Υ(3S) NOT YET SEEN

$\Upsilon \rightarrow \tau \tau$ Motivation

NAIVE UNIVERSALITY:

■ $B(\Upsilon \rightarrow EE) = B(\Upsilon \rightarrow \mu\mu) = B(\Upsilon \rightarrow \tau\tau)$

- IF THIS AIN'T THE CASE, THERE'S SOME EXPLAINING TO DO
- SANCHIS-LOZANO: HIGGS SEARCHES HAVE A BLIND SPOT NEAR THE Y CF NEXT TALK, HEP-PH/0307313

The decay chain $\Upsilon \rightarrow \gamma \eta_b$, $(\eta_b \rightarrow A^0)$, $A^0 \rightarrow TT$ could alter N($\Upsilon \rightarrow TT$)/N($\Upsilon \rightarrow \mu \mu$), if Υ soft&undetected

GOAL:
$$B(\Upsilon \rightarrow TT)/B(\Upsilon \rightarrow \mu\mu)$$

Solate $\mu\mu$ and TT signals at & below $\Upsilon(nS)$,
 $n=1..4$
Apply ON -S*OFF to $\Upsilon(4S)$ data for $\mu\mu$ and TT -
 $expect B(4S \rightarrow ll) \approx 0$
 $rec_{hnique} c_{heck}$
Find OFF Resonance $O(e^+e^- \rightarrow TT)$; compare with
 $O(e^+e^- \rightarrow \mu\mu)$
**Apply ON-S*OFF to 1S, 2S, 3S data for $\mu\mu$ and
 TT**

- EXTRACT R = $N(\Upsilon \rightarrow TT)/N(\Upsilon \rightarrow \mu\mu)$
- **Get Branching Ratio** $B(\Upsilon \rightarrow TT)$ using $B(\Upsilon \rightarrow \mu \mu)$

How to find $\Upsilon \rightarrow \tau\tau$, $\mu\mu$

Use $\mu\mu$ cuts similar to previous $\Upsilon \rightarrow \mu\mu$ study

Use 1 Prong decays : $B(T \rightarrow 1 \text{ prong}) \approx 75\%$

2 TRACK EVENTS, PASSING GENERIC TT MISSING MOMENTUM, ENERGY CUTS (NEUTRINOS!)

CLASSIFY TRACKS AS E, μ , X

INCLUDE NEUTRAL ENERGY, SHOWER CUTS

COSMICS ARE REJECTED

ON & S*OFF AT THE $\Upsilon(4S)$

ON-S*OFF WORKS AT $\Upsilon(4S)$ NO EVIDENCE FOR NON-1/E² BACKGROUND

OFF RES $\sigma(TT)/\sigma(\mu\mu)/Exp$

BREAKDOWN BY T DECAY CHANNELS

ALL DECAY CHANNELS AGREE

We can reconstruct $ee \rightarrow TT$, $\mu\mu$

ON AND S*OFF RES FOR TT, µµ

TOTAL TT RECONSTRUCTED ENERGY / ECM :

MASS OF µµ /ECM :

DATA REMAINING AFTER ON-S*OFF SUBTRACTION SHOULD BE ALL DUE TO Y DECAYS

GETTING $N(\Upsilon \rightarrow ll)$

- DATA AFTER ON-S*OFF IS A SUM OF SIGNAL $\Upsilon \rightarrow \ell \ell$, CASCADE TO LOWER $\Upsilon \rightarrow \ell \ell$, OTHER Υ DECAYS.
- MEASURE BR($\Upsilon(1S) \rightarrow ll$) TO SCALE MC CASCADE BGD FOR $\Upsilon(2S)$ DECAYS, ITERATE FOR $\Upsilon(3S)$.
- Use Koralb for $\Upsilon \rightarrow TT$ with ISR turned off
 - Y HAS THE QUANTUM NUMBERS OF THE PHOTON
 - KORALB HAS HELICITY CORRELATIONS

A SPRINKLING OF PLOTS

TOTAL ENERGY DISTRIBUTION FOR 3 DIFFERENT MODES AT 3 RESONANCES FOR TT, ASSUMING UNIVERSALITY

NEED MORE CONVINCING ?

GOOD AGREEMENT W/ MC ACROSS RESONANCES, FINAL STATES, AND KINEMATIC QUANTITIES JED QWG06

HOW MANY EVENTS ?

SUM OF ALL T DECAY MODES

	15	25	35
On-S*Off	61697±1536	25085±1399	16290±1522
background	1556±83	3334±593	1536±474
ε(ττ)	11.2±0.1%	11.3±0.1%	11.1±0.1%
Ν(ττ)/ε (10 ³)	537±14	193±12	132±13
Ν(μμ)/ε (10 ³)	527±15	185±11	126±11

STAT, MC STAT ERRORS INC

$\mathcal{R}=B(\Upsilon \rightarrow TT)/B(\Upsilon \rightarrow \mu\mu)$

$$\frac{\mathcal{R}(1S) = 1.02 \pm 0.02 \pm}{\mathcal{R}(2S) = 1.04 \pm 0.04 \pm}$$
$$\frac{\mathcal{R}(3S) = 1.07 \pm 0.08 \pm}{\mathcal{R}(3S) = 1.07 \pm 0.08 \pm}$$

LARGEST SYST FROM T SELECTION CRITERIA (2.9%) AND TRIGGER (1.6%)

ALMOST ALL STAT ERROR FROM ON/OFF SUBTRACTION

TO BE SUBMITTED TO PRL ANY MINUTE

0.05

0.05

0.05

R by Decay Mode

(X,Y) = P(X) > P(Y)

AVERAGE OVER

OVERALL AVERAGE

EXTRACTING $B(\Upsilon \rightarrow TT)$

Use CLEO'S PUBLISHED B($\Upsilon \rightarrow \mu\mu$) - CF I. DANKO TALK PRL94,012001(2005)

Avoid syst error double counting $T_{stat} = \frac{s_{YsT+\mu}}{s_{TAT}}$ B(Y(1S) \rightarrow TT) = 2.54 ± 0.04 ± 0.12 %

B($\Upsilon(2S)$ →TT) = 2.11 ± 0.07 ± 0.13 % B($\Upsilon(3S)$ →TT) = 2.55 ± 0.19 ± 0.15 %

WHAT ABOUT η_{B} /HIGGS?

 $\blacksquare \mathcal{R}$ is consistent with 1 - no big signal

ATTRIBUTE DEVIATION $\mathcal{R}(1S)$ -1 TO "HIGGS" B($\Upsilon \rightarrow \gamma \eta_{B}, \eta_{B} \rightarrow A^{o}, A^{o} \rightarrow TT$) < 0.27%

 LOOK AT Y SPECTRUM
 NO OBVIOUS SPIKE IN THE 1S SPECTRUM

- EXPECTED REGION IS FALLING FAST - HARD SYST
- NO OBVIOUS SPIKE IN 2S, 3S SPECTRA

90% CL UL

CONCLUSIONS

CLEO HAS:

- SEARCHED FOR LFV GIVES BR($\Upsilon \rightarrow \mu T$) $\approx < 10^{-5}$ 90% CL UL
- MEASURED $B(\Upsilon \rightarrow TT)/B(\Upsilon \rightarrow \mu\mu)$ consistent with 1
- **MEASURED** $B(\Upsilon \rightarrow TT)$
 - CONSISTENT WITH PDG AT 1S (BUT LOWER)
 - BEST VALUE FOR 2S
 - FIRST VALUE FOR 3S
- SET LIMIT ON CP ODD HIGGS IN $\Upsilon(1S)$ REGION