1

Rare decays and transitions at CLEO [singlets $(1^{1}P_{1} \text{ and } 1^{1}S_{0})$ in bb and cc]

Hajime Muramatsu University of Rochester

Searches/measurements of rare transitions

- The discovery of $h_c(1^1P_1)$ Will have $10 \times more \psi(2S)$ data (~30M decays). Measure $M(h_c)$ at ~0.2MeV level w/ the new data.
- We see $\psi(2S) \rightarrow \pi^0 h_c \rightarrow \pi^0 \eta_c \gamma$ with 3M $\psi(2S)$'s. Why not $\Upsilon(3S) \rightarrow \pi^0 h_b \rightarrow \pi^0 \eta_b \gamma$ with 6M $\Upsilon(3S)$'s ?
- Any other ways to reach $\eta_b(1S)$ state?
- Some up coming projects with 30M ψ(2S) data.
 Means we will also have ~15M J/ψ decays!

3

Discovery of h_c

- Predicted: $B(\psi(2S) \rightarrow \pi^0 h_c) \times B(h_c \rightarrow \eta_c \gamma) \sim 4 \times 10^{-4}$ M.B. Voloshin (Sov.J.Nucl.Phys.43, 1011 (1986)) and S. Godfrey and J. Rosner (PRD66, 014012 (2002)).
- Procedures:
 - Inclusive:
 - Demand recoil mass vs $(\pi^0 \gamma)$ be consistent with $M(\eta_c)$ Or demand the E_{γ} be consistent with the expected energy.
 - Then look at recoil vs π^0 .
 - Exclusive: does full reconstructions of η_c (7 modes).
- Obtained: PRD72,092004 and PRL95,102003
 - Incl: $< M(1^{3}P_{J}) > - M(h_{c}) = (+0.5\pm0.7\pm0.4) \text{ MeV/c}^{2}$ $B \times B = (3.5\pm1.0\pm0.7) \times 10^{-4}$
 - Inclusive+Excl: $<M(1^{3}P_{J})> - M(h_{c}) = (+1.0\pm0.6\pm0.4) \text{ MeV/c}^{2}$ $B \times B = (4.0\pm0.8\pm0.7) \times 10^{-4}$ w/ >5 σ significance
 - where $\langle M(1^{3}P_{J}) \rangle = 3525.4 \pm 0.1 \text{ MeV/c}^{2}$.
 - E835: PRD72, 032001 $<M(1^{3}P_{J})> - M(h_{c}) = (-0.4\pm0.2\pm0.2) MeV/c^{2}$ w/ ~3 σ significance.

10300

10200

9900

9800

9700

9600

9500

9400

2'P.

How about h_b?

- Could repeat the same exercise to look for $\Upsilon(3S) \rightarrow \pi^0 h_b \rightarrow \gamma \pi^0 \eta_b$
- Differences between $\psi(2S) \rightarrow \pi^0 h_c \rightarrow \gamma \pi^0 \eta_c$ and $\Upsilon(3S) \rightarrow \pi^0 h_b \rightarrow \gamma \pi^0 \eta_b$
 - GOOD NEWS
 - $B(h_c \rightarrow \gamma \eta_c) = 37.7\%$ vs $B(h_b \rightarrow \gamma \eta_b) = 41.4\%$ (Godfrey, Rosner, PRD66, 014012 (2002)).
 - $B(\psi(2S) \rightarrow \pi^0 h_c) = 0.1\%$ vs $B(\Upsilon(3S) \rightarrow \pi^0 h_b) = 0.1\%$ (Voloshin, Sov.J.Nucl.Phys.43, 1011 (1986)).
 - BAD NEWS
 - E_{CM}=3686MeV vs E_{CM}=10355MeV: Much higher charged/neutral multiplicities.
 - $\sigma(e^+e^- \rightarrow \psi(2S))/\sigma(e^+e^- \rightarrow qq) \sim 500 \text{ mb}/15 \text{ mb} \sim 30^{10100}$ VS $\sigma(e^+e^- \rightarrow qq) \sim 4 \text{ mb}/27 \text{ b} = 1^{10000}$
 - $\sigma(e^+e^- \rightarrow \Upsilon(3S))/\sigma(e^+e^- \rightarrow qq) \sim 4nb/3nb \sim 1$
 - $E_{\pi 0} \sim 160 \text{MeV}$ vs $E_{\pi 0} \sim 450 \text{MeV}$ (see below)
 - $E_{\gamma} \sim 500 \text{MeV}$ vs $E_{\gamma} \sim 490 \text{MeV}$ (see above/below)
 - $E_{\gamma} \sim 483 \text{MeV from } \Upsilon(3S) \rightarrow \gamma \chi_{b0}(1P)$ Note: $\sigma_E @ \sim 480 \text{MeV} = 10 \sim 12 \text{MeV}.$

5

6

- Early result indicated no sign of signal.
- Knowing $M(\eta_b)$ would be a great help (demanding the recoil vs $\pi^0 \gamma$ be consistent with it).
- We are also working on:
 - Voloshin (hep-ex/0410368) predicts $B(\chi_{b0}(2P) \rightarrow \eta \eta_b) \sim 0.001.$
 - $-\Upsilon(3S) \rightarrow \pi \pi h_b$
 - $B(\Upsilon(3S) \rightarrow \pi \pi h_b) < 10^{-4}$ (Voloshin, Sov.J.Nucl.Phys.43, 1011 (1986)).
 - $B(\Upsilon(3S) \rightarrow \pi \pi h_b) \sim 10^{-4}$ (Kuang: hep-ph/0601044)
 - <18 × 10⁻⁴ UL (90% CL) CLEOII (~0.5M $\Upsilon(3S)$'s) (27 × 10⁻⁴ UL for $\Upsilon(3S) \rightarrow \pi^0 h_b$ mode) PRD49,40 (1994).
 - Revisit search for $\Upsilon(2,3S) \rightarrow \gamma \eta_b(1S)$ (see the next slide)

7

- Hindered M1 transition: $\Gamma_{M1} \propto \frac{e_Q^2}{m_Q^2} |\langle nL|n'L \rangle|^2 E_{\gamma}^3$
- But $E_{\gamma} \sim 911 \ (604) \ MeV \ from \Upsilon(3\tilde{S}) \ (\Upsilon(2S)) \rightarrow \gamma \eta_b(1S) \ with M(\eta_b) \sim 9400 \ MeV/c^2.$
- CLEO has already set ULs (90%CL) on these *BR*'s (PRL94,032001)

Search for $\Upsilon(2,3S) \rightarrow \gamma \eta_b(1S)$

- Wondering if we could approach semi-exclusively such as selecting particular track multiplicity events.
- Or try to reconstruct η_b based on known modes of η_c via direct and hindered M1 transition, $\Upsilon(1,2,3S) \rightarrow \gamma \eta_b(1S)$.

9

Some new analyses : part I

- Looking for $J/\psi \rightarrow \gamma \eta_c(1S)$ in our $\psi(2S)$ data.
- $B(J/\psi \rightarrow \gamma \eta_c(1S))=0.0127\pm 0.0036$:C. Ball (PRD34,711(1986)).
- This is the only observed direct M1 transition in quarkonia.
- Has been used to extract *BR*'s of many η_c decay modes in the PDG.
- Could tag J/ ψ by means of $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$ $\rightarrow \sim 700k$ tagged J/ ψ events.
- → ~ 700k tagged J/ψ events.
 Select the signal (J/ψ) and sidebands and do a subtraction in E_γ spectrum (see the next slide).

Some new analyses : part III

- $J/\psi \rightarrow \gamma X$, X=2 γ final state: π^0 , η , η' , and η_c . And $J/\psi \rightarrow \gamma \gamma \gamma$ directly.
 - Crystal Ball has done this analysis (PRL44, 712 (1980)). Set UL at 90%CL on $B(J/\psi \rightarrow \gamma\gamma\gamma) < 5.5 \times 10^{-5}$ with ~0.9M J/ ψ .
 - Our goal is at least to improve the above limit with 30M $\psi(2S)$ data.
 - Expect $B(J/\psi \rightarrow \gamma\gamma\gamma) / B(J/\psi \rightarrow ggg) \propto (\alpha/\alpha_s)^3$?
- Multipoles in $\psi(2S) \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow \gamma J/\psi$
 - E1 transitions dominate.
 - The expected M2 amplitudes for $\chi_{cJ} \rightarrow \gamma J/\psi$ are: $a_2(\chi_{c1}) = -E_{\gamma}/(4m_c) \times (1+\kappa_c)$ $a_2(\chi_{c2}) = -3E_{\gamma}/(4\sqrt{5m_c}) \times (1+\kappa_c)$, where κ_c is the charm quark's anomalous magnetic moment.
 - $a_2(\chi_{c1})/a_2(\chi_{c2}) = \sqrt{5/3} \times E_{\gamma}(\chi_{c1})/E_{\gamma}(\chi_{c2}) = 0.676$ expected!
 - Present experimental data (E835,E760,C.Ball) do not agree, but not really significant either.

Conclusions

- CLEO has discovered h_c via $\psi(2S) \rightarrow \pi^0 h_c \rightarrow \gamma \pi^0 \eta_c$.
- Will improve this measurement (mass and the product of rates) based on the new 30M $\psi(2S)$ data.
- Will set ULs (or see signals!) on the rates of:
 - $\ \Upsilon(3S) {\rightarrow} \pi^0 h_b {\rightarrow} \gamma \pi^0 \eta_b$
 - $\Upsilon(3S) \rightarrow \pi \pi \, h_b \rightarrow \gamma \, \pi \pi \, \eta_b$

 - $\ \Upsilon(2,3S) \rightarrow \gamma \ \chi_{b0}(2P), \ \chi_{b0}(2P) \rightarrow \eta \ \eta_b$
- We are looking at:
 - $\ J/\psi \to \gamma \ \eta_c.$
 - $J/\psi \rightarrow \gamma X$, X=2 γ final state: π^0 , η , η' , and η_c . And $J/\psi \rightarrow 3\gamma$'s directly.
 - multipole effects in $\psi(2S) \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow \gamma J/\psi$, measuring magnetic moment of charm quark!

Stay tuned! Many more exciting results are STILL coming from CLEO in the near future!