χ_{cJ} decays to light hadrons at CLEO

Mikhail Dubrovin

CLEO Collaboration and *Wayne State University*

June 28, 2006 Heavy Quarkonium 2006, BNL

well known

• We find copious χ_{cJ} hadronic decays in exclusive modes

$$\chi_{cJ}$$
 → 2-body
 χ_{cJ} → 3-body, Dalitz analysis

 $ightarrow \chi_{cJ} \rightarrow 4$ and multi-body decays

Outline

• Selected analyses of χ_{cJ} hadronic decays:

$$\begin{split} & \swarrow \chi_{cJ} \to \eta^{(\prime)} \eta^{(\prime)} \\ & \searrow \chi_{cJ} \to VV \qquad (V = \phi, \, \omega) \\ & \searrow \chi_{cJ} \to h^+ h^- h^0 h^0 \quad (h = \pi, \, K, \, \eta, \, p \,) \\ & \searrow \chi_{cJ} \to h^+ h^- h^0, \, \text{ 3-body decays, Dalitz plot analysis} \end{split}$$

Motivation $\chi_{c0,2} \rightarrow VV, PP, SS$

- Qiang Zhao, Phys. Rev., D72:074001, 2005:
 - \succ g₀: basic gqq* coupling
 - r: OZI-rule violation
 - R: SU(3) flavour breaking
 - t: glueball coupling strength

Reconstruction of $\psi(2S) \rightarrow \gamma \chi_{cJ}$, $\chi_{cJ} \rightarrow h^0 h^+ h^-$

- > Use particle ID (dE/dx & RICH) for π , K, p
- $> K_{S}^{0} / \Lambda$: flight path > 5 / 3mm, $|\Delta m| < 10 / 5 MeV/c^{2}$
- $> \gamma$: 30MeV in good barrel, 50MeV elsewhere,

no track match, good shower shape

> π⁰→γγ, mass constrained fit χ²<10

- ightarrow $\eta \rightarrow \gamma \gamma$, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-\gamma$, meson mass constrained
- \succ η' \rightarrow ηπ⁺π⁻, γρ
- Reconstruct the two charged particles and vertex constrain them. Use this as a starting point for neutral
- > Add a radiated photon and constrain total decay $\psi(2S)$ 4-momentum (accounting for crossing angle) and cut at $\chi^2 < 25$
- Plot the mass spectra of hadron combinations

 $\chi_{cJ} \rightarrow \eta^{(')} \eta^{(')}$

- Measurement of \mathcal{BR} or set an UL
 - $\chi_{cJ} \rightarrow \eta \eta$ $\chi_{cJ} \rightarrow \eta \eta'$ $\chi_{cJ} \rightarrow \eta \eta' \eta'$

- $\chi_{c1} \rightarrow PP$ spin-parity violated, not seen
- From signal MC:
 - > Resolution $\sigma = 4.7-8.3 \text{ MeV/c2}$
 - \succ Efficiency ~4-6% (includes \mathcal{BR})

Preliminary results for $\chi_{cJ} \rightarrow \eta^{(')} \eta^{(')}$

Heavy Quarkonium 2006, BNL Mikhail Dubrovin CLEO-c 8

 $\chi_{cJ} \rightarrow VV$

Measurement of BR or set an UL on

$$\lambda_{cJ} \to \varphi \varphi$$
$$\lambda_{cJ} \to \omega \omega$$

$\succ \chi_{cJ} \rightarrow VV$ other modes are not studied yet

Observation of $\chi_{cJ} \rightarrow$ ΦΦ

BES2: BR($\chi_c \to \phi$	$\phi) \times 10^{-3}$	$0.94{\pm}0.21{\pm}0.14$		$1.48 \pm$	$0.26 {\pm} 0.23$
June 28, 2006	Heavy Qu	uarkonium 2006, BNL	Mikhail Dubrovin	CLEO-c	10

Observation of $\chi_{cJ} \rightarrow \omega \omega$

 $\chi_{c,I} \rightarrow h^+h^-h^0h^0$

Measurement of BR or set UL on

 $\lambda_{cJ} \rightarrow h^{+}h^{-}\pi^{0}\pi^{0} \quad (h = \pi, K, p - tracks)$ $\lambda_{cJ} \rightarrow h^{+}h^{-}\eta\pi^{0}$ $\lambda_{cJ} \rightarrow K\pi K^{0}\pi^{0}$

Motivation

>modes with two neutral particles π⁰ and η have not been seen before

 $\chi_{cJ} \rightarrow h^+h^-\pi^0\pi^0$, $K\pi K^0\pi^0$

- Resolution σ =4-9 MeV/c², Efficiency ~3-19%
- Work on systematic uncertainties in progress
- Investigate an event substructure (w/o PWA)
- Other 4-body modes need to be studied

June 28, 2006

 $\chi_{c,I} \rightarrow h^0 h^+ h^-$

• Study 3-body decays of $\chi_{cJ} \rightarrow h^0 h^+ h^-$

Measurement of BR or set UL $\chi_{cJ} \rightarrow \eta \pi^+ \pi^-$, K⁺K⁻π⁰, K⁰_SKπ, ηK⁺K⁻, η'π⁺π⁻, ηpp, π⁰pp, ΛKp

➤ Dalitz plot analysis of 3 modes with high statistics: $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$, K⁺K⁻π⁰, K⁰_SKπ

Yield $\chi_{cJ} \rightarrow \eta \pi^+ \pi^-$, $K^0_S K \pi$, $K^+ K^- \pi^0$

Take χ_{c1} statistics for DP analysis

Dalitz plot formalism

- Log likelihood
- PDF

 $\mathcal{L} = -2\sum_{n=1}^{N} \log PDF(x_n, y_n)$ $PDF(x, y) = \begin{cases} \varepsilon(x, y) \\ B(x, y) \\ fN_S |\mathcal{M}(x, y)|^2 \varepsilon(x, y) + (1 - f)N_B B(x, y) \end{cases}$ $\mathcal{M} = \sum_R c_R PW_R \Omega_R F_F$ Fit output

- Matrix element
- DP for J=1 ?
 - Angular distributions Ω_R from
 V.Filippini, A.Fontany, A.Rotondi,
 PR D51(1995) 2247
- Partial waves (PW_R):
 - > Breit-Wigner,
 - $\succ \pi^+\pi^-$ S-waves:

♦ Oller Pole_A (s) =
$$\frac{1}{s - s_A}$$
 $s_\sigma = (0.47 - i0.22)^2$ GeV² for ππ S-wave.
♦ Flatte

Flatte _{f0(980)} (m) =
$$\frac{1}{m_{f_0}^2 - m^2 - i(g_{\pi\pi}^2 \rho_{\pi\pi} + g_{K\bar{K}}^2 \rho_{K\bar{K}})}$$

Heavy Quarkonium 2006, BNL Mikhail Dubrovin CLEO-c 18

Sources of systematic uncertainties

Event selection

Efficiency

- Simultaneous fit to data and MC events with float pars
- Model dependence
 - Angular distributions
 - > Other models for $\pi\pi$ S waves, add/remove resonances/waves, free resonance parameters, etc.

Results for $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

21

Isospin symmetry for $\chi_{c1} \rightarrow K\underline{K}\pi$

• Rates for $K_{S}^{0}K\pi$ and $K^{+}K^{-}\pi^{0}$ modes

 $\Gamma(\chi_{c1} \to \pi^+ K^- K^0) + \Gamma(\chi_{c1} \to \pi^- K^+ \overline{K^0}) = 4\Gamma(\chi_{c1} \to \pi^0 K^+ K^-)$

Constrains for the Dalitz plot parameters
 @ individual PDF normalization:

$$\begin{aligned} a_{K^{*+}} &= a_{K^{*-}} = a_{K^{*0}} \equiv a_{\overline{K^{*0}}} \equiv a_{K^{*}} ,\\ \phi_{K^{*+}} &= \phi_{K^{*-}} = \phi_{K^{*0}} = \phi_{\overline{K^{*0}}} \equiv \phi_{K^{*}} ,\\ a_{a(980)^{+}} &= a_{a(980)^{-}} = a_{a(980)^{0}} \equiv a_{a(980)} ,\\ \phi_{a(980)^{+}} &= \phi_{a(980)^{-}} = \phi_{a(980)^{0}} \equiv \phi_{a(980)} .\end{aligned}$$

Combined fit for $\chi_{c1} \rightarrow K^0{}_S K\pi$, K+K- π^0

Mode	Nominal fit	
$K^{*}(892)$	1	
	0	
$K^+K^-\pi^0$: 2×, %	$9.8{\pm}2.0{\pm}1.0$	
$K^0_S K \pi$: 2×, %	$9.9{\pm}2.0{\pm}0.9$	
$K_2^*(1430)$	$0.50{\pm}0.09{\pm}0.12$	
	$-2{\pm}13{\pm}6$	
$K^+K^-\pi^0$: 2×, %	$9.1{\pm}3.4{\pm}3.4$	
$K_S^0 K \pi$: FF $(K_2^*(1430)^+)$, %	$9.3{\pm}3.4{\pm}1.6$	
$K_S^0 K \pi$: FF $(K_2^*(1430)^0), \%$	$8.4{\pm}3.0{\pm}1.5$	
$K_0^*(1430)$	$5.3{\pm}1.0{\pm}0.1$	
	$77 \pm 12 \pm 16$	
$K^+K^-\pi^0: 2 \times, \%$	$17.8 {\pm} 6.3 {\pm} 1.3$	
$K^0_S K \pi$: 2×, %	$18.2{\pm}6.4{\pm}1.6$	
$K^{*}(1680)$	$2.3{\pm}0.5{\pm}0.5$	
	$-38{\pm}12{\pm}12$	
$K^+K^-\pi^0$: 2×, %	$5.5 {\pm} 2.7 {\pm} 1.7$	
$K^0_S K \pi$: 2×, %	$5.6{\pm}2.6{\pm}1.0$	
$a_0(980)$	$10.8 \pm 1.2 \pm 1.2$	
	$-112{\pm}12{\pm}3$	
$K^+K^-\pi^0,~\%$	$29.5 {\pm} 7.3 {\pm} 2.8$	
$K^0_S K \pi, \%$	$29.4{\pm}6.9{\pm}2.2$	
$\sum_i FF_i, \%$	~ 115	
$-2\sum \log L$	-545.7	
$Pearson/N_{d.o.f.}$	57.2/53	
$P(Pearson, N_{d.o.f.}), \%$	32.1	J

Amplitude, a.u. Phase, degree Fit fraction(s), %

- K*(892), K₂*(1430), a₀(980) are clearly seen but not sufficient to provide good fit.
- We find several models with good fit quality with additional
 - $> + K_0^*(1430), K^*(1680), Prob.~30\%$
 - ➤ + NR, Prob.~17%
 - ≻ + к, Prob.~10%
- With larger statistics we hope to resolve this ambiguity.

June 28, 2006

Heavy Quarkonium 2006, BNL

Preliminary $\mathcal{B}(\%)$ for $\chi_{cJ} \rightarrow h^0h^+h^-$

		_	
Mode	χ_{c0}	χ_{c1}	χ_{c2}
$\eta \pi^+ \pi^-$	< 0.021	$0.52 \pm .03 \pm .03 \pm .03$	$0.051 \pm .011 \pm .004 \pm .003$
ηK^+K^-	< 0.024	$0.034 \pm .010 \pm .003 \pm .002$	< 0.033
$\eta p \bar{p}$	$0.038 \pm .010 \pm .003 \pm .02$	< 0.015	$.019 \pm .007 \pm .002 \pm .002$
$\eta' \pi^+ \pi^-$	< 0.038	$0.24 \pm .03 \pm .02 \pm .02$	< 0.053
$\pi^0 K^+ K^-$	< 0.006	$0.200\pm.015\pm.018\pm.014$	$0.032 \pm .007 \pm .002 \pm .002$
$\pi^0 p \bar{p}$	$0.059 \pm .010 \pm .006 \pm .004$	$0.059 \pm .010 \pm .005 \pm .004$	$0.045 \pm .007 \pm 0.004 \pm .003$
$\Lambda K^+ ar p$	$0.114 \pm .016 \pm .009 \pm .007$	$0.034 \pm .009 \pm .003 \pm .002$	$0.088 \pm .014 \pm .07 \pm .006$
$\overline{K^0}K^+\pi^-$	< 0.005	$0.84 \pm .05 \pm .06 \pm .05$	$0.13 \pm .02 \pm .01 \pm .01$
		×2	
PDG 20	04, K ⁰ _S Kπ : <0.08	0.25±0.07	<0.13 BES '99

- Uncertainties: *stat., syst.,* $\mathcal{B}(\psi(2S) \rightarrow \gamma \chi_{cJ})$
- Dalitz plot analysis gives splitting of \mathcal{BR} for sub-modes of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$, K⁺K⁻ π^0 , K⁰_SK π

Summary

- Using ~3M $\psi(2S)$ we study $\psi(2S) \rightarrow \gamma \chi_{cJ}$, J=0,1,2
- We search for and find a strong signal in numerous χ_{cJ} hadronic decay modes.
- Today we present a few of them:

$\succ \chi_{cJ} \rightarrow \eta^{(\prime)} \eta^{(\prime)}$		3 modes
≻ χ _{cJ} →VV	$(V = \phi, \omega)$	2 modes
$\succ \chi_{cJ} \rightarrow h^+h^-h^0h$	h^{0} (h = π , K, η , p)	7 modes
\succ χ _{cJ} →h+h-h ⁰		8 modes

> Measurement of BR or set UL for **20** modes \times **3** χ_{cJ} states

> Dalitz plot analysis of 3 modes: $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$, K⁺K⁻ π^0 , K⁰_SK π

• $\times 10 \psi(2S)$ statistics is expected by the end of the year