D_(s) Hadronic Decays From CLEO-c

$$e^+e^-
ightarrow D_s^* D_s
ightarrow D_s^+ D_s^- \gamma$$

Peter Onyisi

Cornell University CLEO Collaboration

Charm 2006, June 5-7, 2006

Cornell University Laboratory for Elementary-Particle Physics

- Scope of hadronic decay analyses (and this talk)
- Analysis techniques
- Results:
 - $D^0/D^+/D_s$ absolute branching fractions
 - $\blacktriangleright D^0/D^+ \to (m)\pi^{\pm}(n)\pi^0$
 - $D^+ \rightarrow K_{S,L} \pi^+$
 - $D^0/D^+/D_s \rightarrow (\phi, \eta, \eta')X$

The hadronic decays of charmed mesons are a very active field of study at CLEO-c — multiple talks are covering our results:

- The Quantum Correlation Analysis (D. Asner)
- Dalitz analyses (M. Dubrovin)
- High energy scan [3.97–4.26 GeV] (R. Poling)

This talk will cover branching fraction results.

Physics from branching fractions:

- Important as engineering numbers:
 - "Reference" modes, e.g. $D^0 \to K^- \pi^+$ and $D^+ \to K^- \pi^+ \pi^+$, normalize many D and B decays
 - Inclusive rates help disentangle charm content
- Relative rates of decays measure various decay amplitudes, probe final state interactions

CLEO-c

- Detector slightly modified from Υ physics configuration: silicon vertex detector replaced with (all stereo) drift chamber
- Solenoid magnetic field changed from 1.5T to 1.0T to compensate for lower-momentum tracks
- DAQ, trigger, software, etc. from CLEO-III with only minor changes
- Particle ID (from dE/dx, Čerenkov) better due to lower p tracks
- Muon system now only useful for high momentum (e.g. J/ψ → μ⁺μ⁻)

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Datasets

CLEO-c has accumulated:

- ▶ 281 pb⁻¹ at ψ(3770)
 - $D\overline{D}$ at 6 nb
 - The D^0/D^+ absolute BFs use 56 pb⁻¹ only, are being updated
- \blacktriangleright \approx 200 pb⁻¹ near 4.17 GeV
 - $D_s^*D_s$ at 1 nb, $DD + D^*D + D^*D^*$ at 7 nb
 - Only \approx 75 pb⁻¹ used for results here

These analyses use "single tag" and "double tag" techniques:

- Single tag events reconstruct the signal in events without regard for the rest of the event
- Double tag events reconstruct the signal opposite a well-understood (flavor tagging) decay

Single tags:

- ✓ Full statistics available
- × Branching **ratios** only (ratios of ST yields)
- × D⁰ BFs affected by quantum correlations, especially CP eigenstates

Double tags:

- Very clean
- ✓ Branching fractions from ratios of DT and ST yields
- \checkmark Can infer K_L^0
- Flavor tags minimize quantum correlations
- $\times~$ Tag efficiency $\sim {\rm O}\,(10)\%$

Tagging at different energies

• At $\psi(3770)$, only open charm channels are $D^0\overline{D}^0$, D^+D^-

- Cut on $\Delta E \equiv E_{cand} E_{beam}$, fit in $m_{BC} \equiv \sqrt{E_{beam}^2 |\vec{p}_{cand}|^2}$
- At $E_{cm} = 4.17$ GeV, multiple open channels. For D_s we use $D_s^* D_s$
 - ▶ We use m_{BC} as a proxy for momentum to choose the D^{*}_sD_s two-body decay
 - Fits are in invariant mass
- Charged K, π distinguished using dE/dx (all momenta) and Čerenkov (for high momentum)
- Find π^0 's by combining pairs of isolated showers in the CsI calorimeter, requiring 3σ consistency with π^0 mass $(\sigma \sim 6 \text{ MeV})$
- Find K_S's by combining pairs of tracks that lie within a mass window

Kinematic Separation at $E_{cm} = 4.17$ GeV

- D^0/D^+ reference decay modes are $D^0 \rightarrow K^-\pi^+$ and $D^+ \rightarrow K^-\pi^+\pi^+$
- The classic D_s reference decay has been the exclusive mode $D_s^+ \rightarrow \Phi \pi^+ \rightarrow K^- K^+ \pi^+$
- This causes problems since φ signal is ambiguous given the precision we will soon achieve. All results here are inclusive branching fractions only.

Decay	PDG 2004 fit	Rel uncert
$D^0 \rightarrow K^- \pi^+$	3.80%	2.4%
$D^0 \rightarrow K^- \pi^+ \pi^0$	13.0%	6.2%
$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	7.46%	4.2%
$D^+ \rightarrow K^- \pi^+ \pi^+$	9.2%	6.5%
$D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$	6.5%	17%
$D^+ \rightarrow K_S \pi^+$	1.41%	6.7%
$D^+ \rightarrow K_S \pi^+ \pi^0$	4.85%	31%
$D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$	3.55%	14%
$D^+ \rightarrow K^- K^+ \pi^+$	0.89%	9.0%
$D_s^+ \rightarrow K_S K^+$	1.8%	31%
$D_s^+ \rightarrow K^- K^+ \pi^+$	4.3%	28%
$D_{\rm s}^+ \rightarrow K^- K^+ \pi^+ \pi^0$	—	_
$D_s^+ \rightarrow \pi^+ \pi^+ \pi^-$	1.00%	28%

BaBar has a 2005 $\phi\pi^+$ measurement, 34% higher than the PDG, with 13% errors.

(Follows pioneering analysis at $\psi(3770)$ by Mark III...)

- Exploit low-energy production processes:
 - At 3.77 GeV, open charm *only* produced as $D^0\overline{D}^0$ and D^+D^-
 - At 4.17 GeV, D_s produced almost entirely as $D_s^* D_s$
- Single tags pin down ratios between modes, double tags establish absolute BF scale
 - Use a χ^2 (D^0/D^+) or maximum likelihood (D_s) fit to the observed yields to extract maximum information
- ► For D^0/D^+ , double tags reconstruct entire event. For D_s , we only reconstruct the $D_s^+D_s^-$ (the γ or π^0 from the $D_s^* \to D_s$ transition is ignored)

D^0/D^+ Yield Extraction

- Fit signal with a priori function of physical parameters (detector momentum resolution, beam energy spread, ψ(3770) lineshape, ISR spectrum)
- Smooth backgrounds fit as combinatoric phase space ("ARGUS function")
- Peaking backgrounds estimated from known BFs and subtracted
- In double tags, fit 2D plane of M_{BC}(1) vs. M_{BC}(2)

D^0/D^+ Systematic Uncertainties

(56 pb $^{-1}$ analysis)		
Source	Fractional uncertainty (%)	
Tracking/ K_S/π^0	0.7/3.0/2.0 per particle	
Particle ID	0.3 per π , 1.3 per K	
Trigger efficiency	< 0.2	
ΔE cut	1.0–2.5 per <i>D</i>	
FSR modeling	0.5 per single tag	
$\psi^{\prime\prime}$ width	0.6	
Resonant substructure	0.4–1.5	
Event environment	0.0-1.3	
Yield fit functions	0.5	
Misc. event selection	0.3	
Double DCSD interference	0.8 in neutral double tags	

 $D^0 \rightarrow K^- \pi^+$ uncert 2.3%, $D^+ \rightarrow K^- \pi^+ \pi^+$ uncert 2.8% For these, largest contributors are kaon PID and ΔE cut

Branching fractions ...

Value	
Value	
(3.91± 0.08± 0.09)%	
$(14.9 \pm 0.3 \pm 0.5)\%$	
$(8.3\pm 0.2\pm 0.3)\%$	
(9.5± 0.2± 0.3)%	
$(6.0\pm 0.2\pm 0.2)\%$	
$(1.55\pm0.05\pm0.06)\%$	
$(7.2\pm0.2\pm0.4)\%$	
$(3.2\pm0.1\pm0.2)\%$	
$(0.97\pm0.04\pm0.04)\%$	

$\sigma_{D^+D^-}$ (nb)	$\sigma_{D^0\overline{D}^0}$ (nb)	$\sigma_{D\overline{D}}$ (nb)	$\sigma_{D^+D^-}/\sigma_{D^0\overline{D}^0}$
$2.79 \pm 0.07^{+0.10}_{-0.04}$	$3.60\pm0.07^{+0.07}_{-0.05}$	$6.39\pm0.10^{+0.17}_{-0.08}$	$0.776 \pm 0.024^{+0.014}_{-0.006}$

... and cross sections from 55.8 pb^{-1} (PRL 95 121801)

Peter Onyisi

-

D^0/D^+ Result Comparison

Charm 2006 14 / 37

(日) (周) (三) (三)

-큰

D_s Data Yields

Single Tags

Double Tags

- E

-

-

Source	Fractional uncertainty (%)
Tracking/ K_S/π^0	0.35/1.1/5.0 per particle
Particle ID	0.3–1.4 correlated by decay
Resonant substructure	0–6.0 correlated by decay
Fit procedure	3.5 in fit result
Event environment	3.5 in <i>ΚΚ</i> ππ ⁰
Initial state radiation correction	0–5 per single tag
$\mathcal{B}(D_s^{*+} \to \pi^0 D_s^+)$	0.7 in <i>ΚΚ</i> ππ ⁰ , πππ

-

 D_s Results

Preliminary

Mode	CLEO-c (%)	PDG 2004 fit (%)
$\mathcal{B}(K_{S}K^{+})$	$1.28^{+0.13}_{-0.12}\pm 0.07$	1.8 ± 0.55
$\mathfrak{B}(K^-K^+\pi^+)$	$4.54^{+0.44}_{-0.42}\pm0.25$	4.3 ± 1.2
$\mathfrak{B}(K^-K^+\pi^+\pi^0)$	$4.83^{+0.49}_{-0.47}\pm0.46$	—
$\mathcal{B}(\pi^+\pi^+\pi^-)$	$1.02^{+0.11}_{-0.10}\pm0.05$	1.00 ± 0.28

Peter Onyisi

CLEO-c Charm Hadronic Decays

∃ → 17 / 37 Charm 2006

Image: A match a ma

4

Absolute Branching Fractions Summary and Outlook

- ► D^0/D^+ :
 - Branching fractions from 56 pb⁻¹ have precision comparable to world averages
 - ▶ Updating to 281 pb⁻¹: we will be systematics-limited
 - \blacktriangleright Aiming for < 1.5% uncertainty on reference modes
- ► *D_s*:
 - Preliminary absolute branching fractions for four D_s decay modes from 76 pb⁻¹ of data
 - Precision about 11% for all-charged modes
 - Inclusive $K^-K^+\pi^+\pi^0$ is a first measurement
 - The measured BFs are consistent with the PDG 2004 fit
 - \blacktriangleright We are actively working on adding more modes (especially decays with $\eta,\,\eta^{\,\prime})$
 - \blacktriangleright We are aiming for <4% uncertainties with full CLEO-c dataset
 - Have more than 120 pb⁻¹ additional data on tape

Motivations:

- \blacktriangleright Cabibbo-suppressed BFs badly known, in particular for modes with $\pi^0{'}{\rm s}$
- ▶ Isospin analysis from $D \rightarrow \pi\pi$ probes final state interactions
- Find resonant contributions and tune MC
- Single tag analysis provides full reach for these low rate modes
- ▶ Branching ratios measured relative to $D^0 \to K^- \pi^+$ and $D^+ \to K^- \pi^+ \pi^+$

$D^0/D^+ ightarrow (m)\pi^{\pm}(n)\pi^0$

 D^0

 D^+

Shaded histogram is normalized sideband Signals seen in all channels except $D^0 \to \pi^0 \pi^0 \pi^0$

Peter Onyisi

Charm 2006 20 / 37

-

Mode	ℬ (10 ^{−3})	PDG (10 ⁻³)	-
$\pi^+\pi^-$	$1.39 \pm 0.04 \pm 0.04 \pm 0.03 \pm 0.01$	1.38 ± 0.05	-
$\pi^{0}\pi^{0}$	$0.79 \pm 0.05 \pm 0.06 \pm 0.01 \pm 0.01$	0.84 ± 0.22	
$\pi^+\pi^-\pi^0$	$13.2\pm0.2\pm0.5\pm0.2\pm0.1$	11 ± 4	
$\pi^+\pi^+\pi^-\pi^-$	$7.3\pm0.1\pm0.3\pm0.1\pm0.1$	7.3 ± 0.5	For $\pi\pi$ decays obtain
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$9.9\pm 0.6\pm 0.7\pm 0.2\pm 0.1$		Tor <i>itit</i> decays, obtain
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	$4.1\pm 0.5\pm 0.2\pm 0.1\pm 0.0$		amplitude ratios for
$\omega \pi^+ \pi^-$	$1.7\pm 0.5\pm 0.2\pm 0.0\pm 0.0$		$A_2 (\Lambda I - 3/2)$ and
ηπ ⁰	$0.62\pm 0.14\pm 0.05\pm 0.01\pm 0.01$		$M_2 (\Delta I = 3/2)$ and
$\pi^{0}\pi^{0}\pi^{0}$	< 0.35 (90% CL)		$A_0 \ (\Delta I = 1/2)$:
$\omega \pi^0$	< 0.26 (90% CL)		
$\eta \pi^+ \pi^-$	< 1.9 (90% CL)		
$\pi^{+}\pi^{0}$	$1.25\pm 0.06\pm 0.07\pm 0.04$	1.33 ± 0.22	$\left \frac{A_2}{2}\right = 0.420 \pm 0.014 \pm 0.016$
$\pi^+\pi^+\pi^-$	$3.35\pm 0.10\pm 0.16\pm 0.12$	3.1 ± 0.4	$ A_0 $
$\pi^{+}\pi^{0}\pi^{0}$	$4.8\pm 0.3\pm 0.3\pm 0.2$		
$\pi^+\pi^+\pi^-\pi^0$	$11.6\pm 0.4\pm 0.6\pm 0.4$		
$\pi^+\pi^+\pi^+\pi^-\pi^-$	$1.60\pm 0.18\pm 0.16\pm 0.06$	1.73 ± 0.23	$\arg(A_2/A_0) = (80.4 \pm 2.8 \pm 3.3)$
$\eta \pi^+$	$3.61 \pm 0.25 \pm 0.23 \pm 0.12$	3.0 ± 0.6	
$\omega \pi^+$	< 0.34 (90% CL)		_

(Errors: stat, syst, normalizing mode, [CP correlation])

PRL 96, 081802

∃ > Charm 2006 21 / 37

→ < ∃ >

-

$D^+ \to K_{S,L} \pi^+ \ (281 \ { m pb}^{-1})$

Usually assume $\mathcal{B}(D \to K_L X) = \mathcal{B}(D \to K_S X)$ — but this is not strictly true...

Can produce both Cabibbo-allowed \overline{K}^0 and doubly-Cabibbosuppressed K^0 , and their amplitudes for producing K_L and K_S interfere with opposite signs; thus we expect K_L and K_S decays to have unequal rates (Bigi & Yamamoto, PL B349, 363)

Interference \Rightarrow effect $\propto tan^2(\theta_C)$

Expect $\mathcal{B}(D^+ \to K_S \pi^+) \neq \mathcal{B}(D^+ \to K_L \pi^+)$ by up to ~ 10%

22 / 37

 $\underline{D^+} \rightarrow K_S \pi^+$

Double tag analysis

- ► Tag *D*⁺, find extra pion
- Form missing mass² of rest of system: fit for peak at kaon mass² — independent of whether it's K_L or K_S
- Careful understanding of background shapes required
- Combine with absolute $D^+ \rightarrow K_S \pi^+$ BF to form asymmetry

 $D^+ \rightarrow K_S \pi^+$

Preliminary

CLEO-c Charm Hadronic Decays

3

- Inclusive D⁰/D⁺ branching fractions to mesons with large ss content extremely poorly known
- ► D_s final states have more $s\bar{s}$ content, hence expect larger η , η' , ϕ branching fractions
- ► Inclusive rates help disentangle decay chains through open charm (\rightarrow e.g. understand B_s from $\Upsilon(5S)$)
- Uses 281 pb⁻¹ for D^0/D^+ and 71 pb⁻¹ for D_s

$D^0/D^+/D_s \rightarrow (\phi,\eta,\eta')X$

- Double tag: find D⁰/D⁺/D_s; reconstruct φ, η, η' with remaining showers and tracks
 - $\blacktriangleright \text{ Use } \varphi \to \mathcal{K}^- \mathcal{K}^+, \, \eta \to \gamma \gamma, \, \eta' \to \pi^+ \pi^- \eta \to \pi^+ \pi^- \gamma \gamma$
- Use sidebands in $\Delta E (D^0/D^+)$ and $m_{BC} (D_s)$ of the tag side to get the background spectrum
- \blacktriangleright Fit invariant mass of φ and $\eta,$ and $\eta'-\eta$ mass difference

Preliminary

	$\mathcal{B}(\phi X)$ (%)	$\mathcal{B}(\eta X)$ (%)	$\mathcal{B}(\eta' X)$ (%)
D^0	$1.0\pm0.1\pm0.1$	$9.4\pm0.4\pm0.6$	$2.6\pm0.2\pm0.2$
D^+	$1.1\pm0.1\pm0.2$	$5.7\pm0.5\pm0.5$	$1.0\pm0.2\pm0.1$
D_s	$15.1 \pm 2.1 \pm 1.5$	$32.0\pm5.6\pm4.7$	$11.9 \pm 3.3 \pm 1.2$

- η signals include feeddown from η'
- All except $D^0/D_s \to \varphi X$ are first measurements
- Known D_s exclusive modes essentially saturate inclusive measurements

- ► Excellent detector, clean events, and large data sample ⇒ branching fractions for open charm decays with precision ≳ world averages
- ► BF measurements help normalize *D* and *B* physics, probe strong interaction physics
- CLEO-c plans on taking 1.5 fb⁻¹ of open charm data over the next two years, aims for absolute BF precision of 1.5% for D⁰, D⁺and 4% for D_s

Backup Slides

・ロト ・回ト ・ 回ト

æ

Single tag yields: $N_i = N_{D\overline{D}} \mathcal{B}_i \epsilon_i$

Double tag yields: $N_{ij} = N_{D\overline{D}} \mathcal{B}_i \mathcal{B}_j \varepsilon_{ij}$

 $\Rightarrow \left| \text{Branching fractions: } \mathcal{B}_j = \frac{N_{ij}}{N_i} \frac{\epsilon_i}{\epsilon_{ij}} \right|$

In practice, we fit all the yields simultaneously

- Bad $\chi^2 \rightarrow$ something wrong...
- Can correlate systematics
- Obtain cross-section as well

- Fit single tag signals with double Gaussian or Crystal Ball function (parameters fixed from Monte Carlo) plus a linear background
 - Each charge done separately
- In double tags, count events in signal and sideband boxes
 - Combinatoric background is flat in $m(D_s^+) - m(D_s^-)$, has structure in $m(D_s^+) + m(D_s^-)$

Backgrounds

- Non-peaking backgrounds removed in the yield fit
- Peaking backgrounds are from crossfeed between modes we consider, and contamination from other modes
 - ► Latter dominated by Cabibbo-suppressed decays in K_S modes, e.g. prompt $D^+ \rightarrow 5\pi$ fakes $D^+ \rightarrow K_S 3\pi$; in some modes up to 3% correction
- Estimate backgrounds to single and double tags with PDG branching fractions and efficiencies from MC, subtract from measured yields

DCSD decay $\overline{D}^0 \rightarrow K^- \pi^+$ faking $D^0 \rightarrow K^- \pi^+$ in 30x MC sample. In data, contributes $\approx 0.15\%$ of observed peak.

Charm 2006

32 / 37

- Our Monte Carlo has some reasonable mixture of intermediate resonances
- Our efficiencies depend on the intermediate state
- We reweight the expected efficiencies by comparing data yields with MC expectations
 - Size of correction is largest systematic for K⁻K⁺π⁺π⁰
- The correction for a given mode affects that mode's BF only

Systematics studies using ψ^\prime

- Clean decays $\psi' \rightarrow J/\psi \pi^+ \pi^$ and $J/\psi \pi^0 \pi^0$ used to compare tracking and π^0 efficiencies in MC and data
- Reconstruct J/ψ and one pion; compute recoil mass: peaks at pion mass
- Find fraction of such events with other pion reconstructed
- Right: Plots for J/ψ π⁺π[−], 0.15 < cos θ_π < 0.55
 - $\epsilon = (95.89 \pm 0.20)\%$; agrees with MC within statistics

(日) (同) (三) (三)

Production Channel

- We use events with the topology $e^+e^- \rightarrow D_s^{*\pm}D_s^{\mp} \rightarrow D_s^+D_s^-(\gamma, \pi^0).$
- We do **not** reconstruct the γ or π^0 .
- ▶ We use the momentum of the D_s candidates to select for events with an intermediate D^{*}_s. (The quantity

$$m_{BC}=\sqrt{E_{beam}^2-ec{p}_D^2}$$
 is a proxy for momentum.)

We can use a loose cut to include the daughters of D^{*}_s, or a tight cut for the directly produced D_s

- Expect (f₀(980) → K⁻K⁺)π⁺ to contribute to any φ mass region, with badly controlled parameters
- Correction might be on the order of 5% or more — but depends on experiment's mass window, resolution, angular distribution requirements!

Looking at low-mass KK pairs (m(KK) < 1.005 GeV) we see evidence for scalar production by looking at helicity angle

Can we compare with the BaBar $\mathcal{B}(D_s^+ \to \varphi \pi^+)$ result?

We can use the PDG fit branching ratios...

▶ We are more consistent with 3.6% than 4.8%