A Review of Charm Physics

Roy A. Briere Carnegie Mellon University (& CLE0 Collaboration)

CIPANP 2006 Westin Rio Mar Beach, Puerto Rico 31 May 2006

1

Outline

Introductory Observations Bread & Butter Physics: Lifetimes & Masses

Searches for New Physics:
 D° - \overline{D}° Oscillations & Rare DecaysSwanson: C
Tomaradze:
TsuboyamaQCD Effects & Heavy Flavor Physics:
Decay Constants, Form Factors, Absolute BFsSwanson: C
Tomaradze:
TsuboyamaUnderstanding the Charm Region:
Recent Work on $\psi(3770)$ Swanson: C
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Tomaradze:
Toma

The Future Conclusions

Charm in Parallel talks:

Bitenc: D mixing at B Factories Blusk: CLEO Ds scan, Y(4260) Cronin-Hennessy: CLEO Open Charm Hinz: States around 4 GeV Mallik: Y(4260) & other states Marton: Future PANDA Experiment Swanson: Charmonium Spectroscopy Tomaradze: BES+CLEO Charmonium Tsuboyama: Belle Charmed Baryons

What's NOT included in this talk:

Spectroscopy: see Jon Rosner's plenary Charm Production Most of Charmonium is not covered (and whatever else I couldn't fit ... apologies in advance !)

Favorite Reviews for Perspective

What we knew before Charm was discovered:

Search for Charm M.K. Gaillard, B.W. Lee & J.L. Rosner Rev. of Mod. Phys. 47, 277 (1975) written before the November Revolution**

What we knew 30 years later:

A Cicerone for the Physics of Charm S Bianco, F.L. Fabbri, D. Benson & I. Bigi Nuovo Cimento 26, 1 (2003) 200 pages !

I'll try to emphasize new results & interconnections to other sub-fields

** Nov. 1974 marked the discovery of the J/ψ c c̄ state.
This "November Revolution" helped to solidify the Standard Model.
(Japanese emulsion experiments had good evidence *before* this...)

Good Things Come in Pairs

B Factories

Charm Factories

Hadron Colliders

Fixed Target

Building on a fine tradition: E791, LEP/SLD, E687, E691, WA89, MARKIII, H1, ZEUS, E835, R704, etc.

Experimental Issues

B Factories:

~120 x 10⁶ ccbar pairs / 100 fb⁻¹

Substantial continuum rate $(B \Rightarrow DX \text{ rate ~equal, but softer})$ Hard fragmentation: higher momentum, lower combinatorics Good with neutral daughters

Charm Factories: ~640 x 10³ ccbar pairs / 100 pb⁻¹

Modest Rates; low momentum: silicon not useful here Constrained Kinematics: very clean

Good with neutral daughters & especially neutrinos *Hadron colliders*:

Very high rate Need detached vertex & lepton triggers Limited modes

Fixed Target:

High rateMost modes accessibleLarge boosts good for lifetimes

5

Charm vs. Beauty

 $\lambda = \sin \theta_C \sim 0.22$ Cabibbo quark-mixing angle

$O(\lambda^4)$ Decay rate: 0(1)

"Cabibbo"-suppression of b decay compensates $\Gamma \sim m^5$ behavior Long *B* life inspired Wolfenstein's famous CKM parameterization... Advent of silicon vertex detectors revolutionizes b physics, as well as c

Mixing Ampl. : $O(\lambda^2)$

Charm decays too fast to mix

$$O(\lambda^6) \ge f(m_t)$$

B mixing enhanced by top mass (actually, B_s enhanced too much!)

Fully Reconstruct: 13%

 $\sim 0.1\%$ Factories produce **meson pairs**: A fully-reconstructed meson acts as a "Tag" (more on tags later...)

Much larger B factory luminosity:

- -- Compensates for smaller efficiency & cross-section for single tags
- -- But high efficiency for charm allows for more "double tags"

6

Theory & Charm

Lattice QCD:

e.g., CLEO-c program & Lepage's talk

- Useful for charm & bottom
- Charmonia more relativistic...
- Good opportunities to test in charm sector

Spectator model, quark-hadron duality: NOT like a free quark !

Factor of ~15x spread in lifetimes

(Pauli interference, weak exchange/annihilation) Compare: ~30% for bottom (only 4 states, vs. 7 for charm) Large final-state interactions in charm

B vs. D decay & Penguin example: Long-distance effects common

B decay: integrate out top quark \Rightarrow local 4-quark operator *D* decay: b ~decouples (CKM); dominant strange is light \Rightarrow not short-distance!

HQET:

Useful, but larger $(1/m)^N$ corrections, & no heavy-to-heavy decays like $b \Rightarrow c \ l \ v$ Good for basic properties of P-wave mesons

SCET, OPEs, QCD Sum Rules, Dispersion Relations, Potential Models, Bag Models, ...

Charm Lifetimes (~PDG 04)

	PDG ave	Best; error (fs)	#events
D +	$1040 \pm 7 \text{ fs}$	FOCUS'02 ±8	110,000
D_{s}^{+}	501 ± 6 fs*	FOCUS'05 ±8	13,641
D ⁰	410.3 ± 1.5 fs	FOCUS'02 ±2	210,000
Λ_{c}	200 ± 6 fs*	FOCUS'02 ±4	8034
		CLEO'01 ±8	
$\Xi_c^{\ heta}$	112 ⁺¹³ ₋₁₀ fs	FOCUS'02 ±14*	110
		E687 '93 ±22*	42
Ξ_{c}^{+}	442 ± 26 fs	FOCUS'01 ±24	532
$oldsymbol{\Omega}_{c}$	69 ± 12 fs	FOCUS'03 ±16	64
		WA89 '95 ±24	86

7 weakly-decaying ground states

Cutoff for my table: all $\leq 2x$ best error

FOCUS plays the dominant role !

Values very Useful : convert BF's to partial widths (extract CKM, ...)

*I've adeed FOCUS'05 *scale factor 1.6: *asymmetric CLEOII ~low

errors quoted

Low phase-space $\pi \mathcal{E} \gamma$ transitions:

CLEO '02 : $\Gamma(D^{*+}) = 96 \pm 4 \pm 22 \text{ keV}$ (syst. limited, no other attempts since...) $_{8}$ D^{*0} , D_{s}^{*} , Ξ_{c}^{+} , Ξ_{c}^{0} : too narrow to see width, too short-lived to see lifetime

Recent Mass & Lifetime Work

D_s lifetime: 507.4 ± 5.5 ± 5.1 fs

PRL 95, 052003 (2005)

 Λ_{c}^{+} mass: 2286.46 ± 0.14 MeV **BABAR** Λ_{c}° *Muss.* 2280.40 ± 0.14 *Wev* 4627+264 events of $\Lambda K_{s}K^{+}$ & $\Sigma^{0}K_{s}K^{+}$ PRD 72, 052006 (2005)

Preliminary Ω_c lifetime:

 $69.3 \pm 14.4 \pm 8.6$ fs 83 events in 2 channels

Preliminary Ξ_c^0 lifetime:

 $430 \pm 22 \pm 9$ fs 301 events in 3 channels Sidebands demonstrate good understanding of backgrounds

Charm Baryon Overview

Lifetimes less precise than for the mesons

Mesons: 0.4 - 1.3% Baryons: 3% - 17%

-- Limited statistics & shorter lifetimes

Need absolute branching fractions:

- -- B($\Lambda_c \Rightarrow pK\pi$) = (5.0 ± 0.5 ± 1.2) % CLEO, with assumptions
- -- Nothing at all to set absolute scale for Ξ_c^{0} , Ξ_c^{+} , Ω_c^{+} !!!

BaBar, Belle, CLEO, FOCUS, SELEX all active:

- -- New decay modes, semileptonic form-factors, masses, ...
- -- Many more results to extract from B-factory datasets

Spectroscopy also still quite active...

Mixing: Intro & Lifetime Differences

D⁰ mixes very little in Standard Model: (and small CP violation)
-- An opportunity to see *new physics effects in loops*!
-- But... long-distance effects make SM prediction imprecise

Mixing parameters: Δ 's are between ~ CP-eigenstates: $x = \Delta m / \Gamma$ $y = \Delta \Gamma / 2\Gamma$ $D_{CP\pm} = (D^0 \pm D^{0bar})/\sqrt{2}$

Measure lifetime difference y via :

-- CP-eigenstates: KK, $\pi\pi$

-- "CP-average" state: $K\pi$

Best results on y are from 2003:

Belle: $(1.15 \pm 0.69 \pm 0.38)$ % 158 fb⁻¹ hep-ex/0308034 BaBar: $(0.8 \pm 0.4 + 0.5 - 0.4)$ % 91 fb⁻¹ PRL 91, 121801(2003) **Pro:** direct *linear sensitivity* to y; measuring a lifetime *difference* **Con:** systematic error improvement is *still* tough !

Semileptonic Mixing Limits

Tag initial flavor (D^{θ} vs. $D^{\theta bar}$) with $D^{*+} \Rightarrow D^{\theta} \pi^{+}$

 $D^0 \Rightarrow K^{(*)} e^+ v$ $D^0 \Rightarrow K^{(*)+} e^- v$ entries [1000 / MeV/c²] Wrong-sign **Right-sign** $r_{\rm D} [10^3]$ 5 2 0 0.14 0.15 0.16 0.17 0.18 $r_M \overset{t_v[\tau_D]}{vs.}$ time $\Delta M [GeV/c^2]$ $\Delta M (D^* - D)$

"Right" & "Wrong": Lepton tags flavor at decay time: $c \Rightarrow s l^+ v$

Unpublished FOCUS'02: $r_M < 0.101\% (90\% CL)$ (from Ph.D. Thesis + APS'03)

Result: $R_M = (x^2 + y^2)/2 < 0.10\%$ 90% CL -- Pro: still statistics limited -- Con: only quadratic in x, y

BFLLF PRD 72, 071101 (2005) 253 fb⁻¹

Mixing: Hadronic Final States $D^0 \Rightarrow K^- \pi^+$: Common decay $D^0 \Rightarrow K^+ \pi^-$: rarer, DCSD decay **DCSD = Doubly-Cabibbo Suppressed Decay** $c \overline{u} \implies s \overline{u} W^+ \implies s \overline{u} u \overline{d} \qquad \mathcal{A} \sim \mathcal{O} (1)$ D. Asner in '06 $c \overline{u} \Rightarrow d \overline{u} W^+ \Rightarrow d \overline{u} u \overline{s} \qquad \mathcal{A} \sim \mathcal{O}(\lambda^2)$ **PDG Review:** So... DCSD final states look just like a mixing signal $D^0-\overline{D}^0$ Mixing Limits Kaon charge is an imperfect flavor tag Belle Kev Average ^v +10% 10 BaBar K π Wrong-sign $K^{+}\pi^{-}$ rate vs. time : Focus Kπ $r(t) = e^{-t} (R_D + \sqrt{R_D y' t} + R_M t^2/2)$ y Integrates to: $R_D + \sqrt{R_D y'} + R_M$ R_D : DCSD rate y', R_M : Mixing **-10%** ·10 $\delta_{K\pi} = 0^{\circ}$ assumed x', y' time-dependent analyses (contours) 95% C.L. Limits **Primes:** x, y are rotated by strong phase $\delta_{K\pi}$

0

10%

X

13

*Mixing: K*π *time-dependence*

Tag flavor with *D** :

Use time-dependence to separate DCSD from possible mixing...

 $Q = M(K\pi \pi) - M(K\pi) - M_{\pi}$ $D^{*} - D^{0} - \pi$ PRL 96, 151801 400 fb⁻¹ (2006)

Assuming no mixing: $R_D = (0.377 \pm 0.008 \pm 0.005) \%$

Mixing Limits: green contour in x-y plot; current best

Consistency with no-mixing: 3.9%

Mixing: Kππ^o Dalitz Plot

Winter conf's

(2006) 230 fb⁻¹

Use parts of Dalitz plot where Cabibbo-Favored is large relative to Doubly-Cabibbo Suppressed !

 $R_M < 0.54 \times 10^{-3}$ (95% CL) Consistency with no-mixing: 4.5% New Dalitz technique is a very welcome addition !

Wrong-sign K_T "Warm-up"

350 pb⁻¹

Exploits *detached vertex trigger*

Assuming no mixing:

 $R_D = (0.405 \pm 0.021 \pm 0.011) \%$

Plan is to update to 1 fb⁻¹ for ICHEP 2006 & then move on to the full time-dependent analysis...

Rare Charm Decays

Rare decays can be important to constrain new physics

Superficially analogous to many familiar B decays

- -- But... long-distance effects important in general
- -- Limits are generally still far from SM rates

Lots of activity at many experiments

- -- Good: More luminosity to come everywhere
- -- Bad: All results have background, so sqrt(lumi) improvement
- -- Envy: One CDF result has huge lumi gain to come soon...

h⁺ l⁺ l⁻ modes are popular Di-leptons, di-photon and radiative modes are also explored

CP & T violation searches are also important for new physics

Tevatron Activity with Muon Triggers:

 $D\phi$ (1 fb⁻¹): $\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-) < 4.7 \times 10^{-6}$ *CDF* (**65** *pb*⁻¹): $\mathcal{C}(D^0 \Rightarrow \mu^+\mu^-) < 2.5 \times 10^{-6}$

Moriond EW PRD 68, 091101 (2003)

 $D^{\star} \Rightarrow \pi^{\star} \mu^{\star} \mu^{-}$

DØ Prelim.

Moriond EW

Dimuon trigger B. Casey Global event topology + detached vertex

Short distance: Z penguin, W box Long distance: phi, omega $\Rightarrow \mu^+\mu^-$

Results:

 $\begin{aligned} \mathcal{C}(D^{*} \Rightarrow \varphi \pi^{+} \Rightarrow \pi^{+} \mu^{+} \mu^{-}) \\ &= (1.75 \pm 0.70 \pm 0.50) \times 10^{-6} \\ \textit{Consistent w/ previous...check.} \end{aligned}$

Look away from φ mass region... \mathscr{C} ($D^{+} \Rightarrow \pi^{+}\mu^{+}\mu^{-}$) < 4.7 x 10⁻⁶

CP/T Violation: Survey of Results

Experiment	Decay mode	A _{CP} (%)	Notes
BaBar	$D^+ \rightarrow K^- K^+ \pi^+$	$1.4 \pm 1.0 \pm 0.8$	
BaBar	$D^+ \rightarrow \phi \pi^+$	$0.2 \pm 1.5 \pm 0.6$	Resonant
BaBar	$D^+ \rightarrow K^{*0} K^+$	$0.9 \pm 1.7 \pm 0.7$	of D ⁺ →K ⁻ K ⁺ p ⁺
CLEO II.V	$D^0 \rightarrow \pi^+ \pi^- \pi^0$	$1 {}^{+9}_{-7} \pm 8$	Dalitz plot analysis
CDF	$D^0 \rightarrow K^+K^-$	$2.0 \pm 1.2 \pm 0.6$	Direct CPV
CDF	$D^0 \rightarrow \pi^+ \pi^-$	$1.0 \pm 1.3 \pm 0.6$	Direct CPV
FOCUS	$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$	$1.0 \pm 5.7 \pm 3.7$	T violation
FOCUS	$D^+ \rightarrow K^{\circ}K^+ \pi^+\pi^-$	$2.3 \pm 6.2 \pm 2.2$	product
FOCUS	$D_{S} \rightarrow K^{o}K^{+}\pi^{+}\pi^{-}$	$-3.6 \pm 6.7 \pm 2.3$	correlations

as compiled by Sheldon Stone for FPCP06

Charmonium Spectrum

Rich Spectroscopy, discussed elsewhere. Main point for us: ψ (3770) is a good source of D mesons.

Charm Factory Datasets

BES

14 x 10⁶ ψ(2S)
58 x 10⁶ J/ψ
6.4 pb⁻¹ cont'm @ 3.65 GeV
Dedicated R_{had} scans
33 pb⁻¹ ψ(3770)

CESR *Only few days* @ current lumi ! $\sim 10x$ this summer 3.1 x 10⁶ ψ (2S) No J/ ψ (access via $\psi(2S) \Rightarrow J/\psi X$) 21 pb⁻¹ cont'm @ 3.67 GeV 60 pb⁻¹ D_s scan; included Y(4260) **281 pb⁻¹** ψ (3770) 180 pb⁻¹ @ 4170 MeV for D_s

CLEO-c detector is superior to BESII... But, BESIII upgrade is well underway! More on this later...

CLEO-c Program: Precision Charm

Provides important tests of Lattice QCD Necessary for overall Heavy Flavor program: helps B factories Started with D⁰, D⁺, now extending to D_s mesons

 $\psi(3770) \rightarrow D^0 \bar{D}^0$ $D^0 \rightarrow K^- e^+ v \& \bar{D}^0 \rightarrow K^+ \pi^-$ Semileptonic decay opposite a fully reconstructed hadronic "Tag" *Cleanly infer neutrinos!*

Almost all **first results** more precise than prior world averages

Reconstructing D Tag Samples

ψ(3770):
-- D D̄ pair + ~35 MeV extra energy
-- Not enough E for extra pions, etc.

All Tags Use: Momentum Conservation: (Mbc) = (Ebeam² - PD²)^{1/2} -- "beam constrained mass" -- Better resolution than 4-vector mass ~1.5 MeV; mostly beam energy spread

Energy conservation: $\Delta E = E_{cand} - E_{beam}$ -- Peaks at 0

-- sensitive to Particle ID, missing particles

Charm as a QCD Lab I Leptonic D Decays

 $f_D LQCD = exp't ?$

 f_{D} is a "decay constant":

use LQCD f_B here

chance that quarks are at same place $\sim |\psi(0)|^2$: square of wavefunction at origin (weak interaction is short-range)

Lattice QCD: Calculate strong force on computers

 $D^* \Rightarrow \mu^* \upsilon_{\mu}$: Extracting f_D

50 candidates; $2.81 \pm 0.30^{+0.84}_{-0.27}$ background Rely on *data* for systematic errors; *Background* from data & MC -- Key backgrounds: $D^+ \Rightarrow \pi^+ \pi^0$, τv , $K^0 \pi^+$

μν ev: PRL 95, 251801 (2005) 281 pb⁻¹ τν: hep-ex/0604043 to appear in PRD

Result: $f_D = (222.6 \pm 16.7 + 2.8_{-3.4})$ MeV

Also limit: $\mathcal{B}(D^+ \to e^+ v) < 2.4 \times 10^{-5} @ 90\%$ c.l. and $\mathcal{B}(D^+ \to \tau^+ v) < 1.8 \times \text{Std. Model} @ 90\%$ c.l.

Theory Comparison for f_D

Will use f_D , f_{Ds} , & ratio to test lattice calculations \Rightarrow confidence in f_B , f_{Bs} to interpret B mixing.

Sample Lattice Calculations:

FNAL/MILC PRL 95, 122002 (2005) **Unquenched** LQCD; $m_{u,d} << m_s$ (but "fourth root" trick) $f_D = (201 \pm 3 \pm 17) \text{ MeV}$ $f_{Ds} = (249 \pm 3 \pm 16) \text{ MeV}$

Chiu et al. PLB 624, 31 (2005) Exact chiral symmetry, BUT quenched LQCD $f_D = (235 \pm 8 \pm 14) \text{ MeV}$ $f_{Ds} = (266 \pm 10 \pm 18) \text{ MeV}$

Comparable experimental & theory errors; working to improve both

 $D_{s}^{*} \Rightarrow \mu^{*} \upsilon_{\mu}$: Extracting f_{Ds}

High statistics B factory data: allows "continuum tagging" of opposite-side charm jet

> **BaBar** $D_s^+ \Rightarrow \mu^+ \upsilon_{\mu}$ LaThuile 230 fb⁻¹

 $f_{Ds} = 279 \pm 17 \pm 6 \pm 19$ MeV

 $\mu^- \upsilon_{\mu}$ candidates opposite a D⁰, D⁺, D^{*+}, or D_s⁺ tag

Last error from $\phi \pi$ BF (CLEO-c will improve)

Bumps in dashed background are due to lower: γ from π^0 in $D_s^* \Rightarrow Ds \pi^0$ higher: μ is mis-id π from τ decay in $D_s \Rightarrow \tau \upsilon$

Charm as a QCD Lab II Semileptonic D Decays

Form factors, CKM FF help w/ B decays

"Form Factor":

~ Chance that quarks bind into a given final state Relate $B \Rightarrow \pi e v$ to $D \Rightarrow \pi e v$ **for V_{ub}**

Also, ratios of $D \Rightarrow \pi e v$ to $D \Rightarrow \mu v$ and $D \Rightarrow Kev$ to $D_s \Rightarrow \mu v$ cancel CKM elements: Pure LQCD tests...

Exclusive Semileptonic

hep-ex/0506052 PRL 95, 181801/2 (2005) 56 pb⁻¹

Great kinematic K/π separation (in addition to particle ID)

Very clean, especially given the neutrino...

Form-factors with 5x data later this summer... But CLEO-c also has ⇒

Uses neutrino reconstruction: an alternative to tagging w/ higher efficiency

(q^2 resolution still more than sufficient)

Preliminary form-factor results from this analysis shown at FPCP. -- Also analyze the $\pi^0 e^+ v$ and $K_s e^+ v$ modes as well.

Preliminary 281 pb⁻¹ FPCP06

Current Form Factors

PLB 607, 233 (2005)

FOCUS: ~13,000 *Klv* events CLEO-c: ~ 6,500 *Klv* events (*tagged*) in current 281 pb⁻¹ sample Big interest: use $D^0 \Rightarrow \pi^- l^+ v$ to understand $B^0 \Rightarrow \pi^- l^+ v$ CLEO-c sample is very clean!

Form Factors: B Factories

High statistics B factories: "continuum tagging"

Belle $D^0 \Rightarrow K I \upsilon$, $\pi I \upsilon$

 π l υ : 232 sig + 61 bkg

BaBar $D^0 \Rightarrow K I \upsilon$

Winter conf's (2006) 75 fb⁻¹

3 2.5 f_(q^2) D° → KIv 2 KIυ 2.5 1.5 1 $f_{+}(q^{2})/f_{+}(0)$ 0.5 KIυ 0 1.5 0.5 q² (GeV²/c²) (q^2) 3.5 $\rightarrow \pi | \nu$ Yellow band: 3 2.5 πv Lattice 1 2 1.5 1 0.5 0.5 0.5 0 0 2 0 1 3 $q^2 (GeV^2/c^2)$ ~ ~

hep-ex/0604049

(to PRL) 282 fb⁻¹

BAR

Charm as a QCD LAB III Hadronic D Decays

Absolute Branching fractions (decay rates) for normalization Cannot calculate

B decays most often to Charm: Form factors less of an issue for $B \Rightarrow D^* | v$ (use HQET methods...) But B decay is normalized to charm

Absolute Branching Fractions

Method:

Double Tags: $D_{ij} = 2N_{DD}\mathcal{B}_i\mathcal{B}_j\varepsilon_{ij}$ Single Tags: $S_i = 2N_{DD}\mathcal{B}_i\varepsilon_i$

Compare PDG to CLEO errors:

D/S Ratio independent of:

 $N_{DD}, \int \mathcal{L} dt, \text{ tag } \mathcal{B}_{j}$ $(\& \text{ tag } \varepsilon_{j} \text{ almost cancels})$

Very Preliminary from 281 pb⁻¹ See PRL95, 121801 (2005) for 56 pb⁻¹

Ratios to **PDG World Ave**

(to keep modes on same scale...)
⇒ most precise already
(NOTE: includes final-state radiation;
will make systematically higher...)

Systematics ~all from efficiency (can study well with data; e.g. missing-mass for tracking efficiency, etc.)

Also get precision cross-sections (more on these later...)

Mode	B (%) (CLEO-c)	$\mathcal{B}(\%)$ PDG
K _S K+	$1.28 + 0.13_{-0.12} \pm 0.07$	1.80±0.55
$K^+K^-\pi^+$	$4.54 + 0.44_{-0.42} \pm 0.25$	4.3±1.2
$K^+K^-\pi^+\pi^o$	$4.83 + 0.49_{-0.46} \pm 0.46$	-
$\pi^+\pi^+\pi^-$	$1.02 + 0.11_{-0.10} \pm 0.05$	1.00±0.28

Errors: 11% now; more data & more tag modes will improve

ψ (3770): Mixing, non-DD decays, ...

Naively, $\psi(2S)$: S-wave, $\psi(3770)$: D-wave But ψ (3770) *must* have some S-wave to couple as much as it does to e⁺e⁻ BES has made many studies related to mixing of these states...

Older experiments: some indication that total resonant cross section exceeds the rate to make D pairs... BES

But not clear, and large errors.

Newer results:	CLEO-с	BES	PLB 603, 130
$egin{array}{lll} \sigma(D^+D^-) & ({ m nb}) \ \sigma(D^ heta D^ heta) & ({ m nb}) \end{array}$	$3.60 \pm 0.07 ^{+0.07}_{-0.05}$ 2.79 ± 0.07 $^{+0.10}_{-0.04}$	$3.58 \pm 0.09 \pm 0.31$ $2.56 \pm 0.08 \pm 0.26$	(2004)

Tiny rates found for some particular non-DD modes... But, need total cross-section to check for inclusive excess: CLEO-c measures: $\sigma_{tot} = (6.38 \pm 0.08^{+0.41}_{-0.30})$ nb This gives non-DD as : $(-0.01 \pm 0.08 + 0.41_{-0.30})$ nb No need for non-DD excess? Limit at ~10% level...

PRL 95, 121801 (2005) 56 pb⁻¹

PRL 96, 092002 (2006) 281 pb⁻¹

ψ (3770) \Rightarrow non-DDbar decays

BES results: maybe there is significant non-DD after all ?!? Two different analyses;

 $\mathcal{E}(\psi(3770) \Rightarrow non-DD) = (16.1 \pm 1.6 \pm 5.7)\% \quad (w/R_{had})$

 $\mathcal{B}(\psi(3770) \Rightarrow non-DD) = (16.4 \pm 7.3 \pm 4.2)\%$ (w/resonance fits)

Very detailed papers posted exactly one week ago to hep-ex. Method of treatment of radiative corrections may be important ?

(*Hard for me to digest papers with a beautiful beach so close by! My apologies...*) 38

hep-ex/0606105 hep-ex/0606107

The Future: BESIII & BEPCII

Energy range	1 – 2.1 GeV	BEPCII
Optimum energy	1.89 GeV	accelerator
Luminosity	$1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ @ 1.89 GeV	Dec'07:
Injection	Full energy injection: 1.55 ??1.89 GeV Positron injection speed > 5 0 mA/min	test run for luminosity Dec'08:
Synchrotron mode	250 mA @ 2.5 GeV	achieve 3 x 10 ³² cm ⁻² s ⁻¹

Yearly data possibilities: (10⁷ s at 1/2 peak lumi = 5 fb⁻¹)

BESIIII detector: all new !

CsI calorimeter Precision tracking Time-of-flight + dE/dx PID

	Central-of-Mass	#Events
Data Sample	(MeV)	per year
J/ψ	3097	$10 imes 10^9$
$\tau^+\tau^-$	3670	$12 imes 10^6$
$\psi(2S)$	3686	$3.0 imes 10^9$
$D^0\overline{D}^0$	3770	$18 imes 10^6$
D^+D^-	3770	$14 imes 10^6$
$D_S^+ D_S^-$	4030	$1.0 imes10^6$
$D_{S}^{+}D_{S}^{-}$	4170	$2.0 imes 10^6$

For more information, see Weiguo Li at FPCP06

BESIII Physics Potential

Many exciting ways to use higher luminosity !

Charmonium states: J/ψ , ψ (25), η_c (15), η_c (25), χ_{cJ} , and h_c

Exotics: hybrids, glueballs and other exotics in J/ψ and $\psi(25)$ radiative decays;

Open charm physics: D, D^+, D_s (like CLEO-c)

Improve statistics-hungry analyses Improved reach for mixing, rare decays, CP violation Quantum correlations, strong $K\pi$ phase, ... Spectroscopy via Dalitz plots

Energy scans: R_{had}, resonances, DD composition, ...

Tau Physics

No doubt many more innovations...

Charm 2006 workshop next week in Beijing

Conclusion & Outlook

We are in a Charm Physics Renaissance

BESII showed us the richness of charm factory datasets CLEO-c now in its prime: precise results aid flavor physics ⇒ both have re-written parts of the PDG re: charm...

CLEO-c will also do D_s : decay constants, semilept., abs. Hadr. BF's & novel analyses at $\psi(3770)$ (quantum correl's, CP tags, etc.) Great promise of BESIII upgrade beginning next year ! ... plus p-pbar for charmonia will return with PANDA.

Much untapped potential at B factories

-- Precise mixing analyses

-- Hadronic BR's (esp. baryons), Dalitz plot analyses, Rare, ...

What else will CDF & DO learn to do with their large rates ???

Fixed target "done", but analysis machine goes on...

A *big* lesson here:

Let's hope Charm & B factories can do as well after their runs !

Selected Topics That Didn't Fit

Numerous J/ ψ , ψ (2S), χ decays Dalitz analyses of D and J/ ψ Updates on D_{sJ}(2317,2460) decays Inclusive D semileptonic DS $\Rightarrow \varphi X$, ηX , ηX (BES & CLEO-c) (Many exp'ts) (BaBar) (CLEO-c) (CLEO-c)

etc...

Acknowledgments

BaBar: Riccardo FacciniBES: Chang-Zheng Yuan, Fred HarrisCDF: Matt HerndonFOCUS: John Cumalat

Belle:Yoshi SakaiCLEO:David Asner, Hanna Mahlke, Sheldon StoneD0:Brendan CaseySELEX:Jim Russ