Absolute Hadronic D^0 and D^+ Branching Fractions at CLEO-c

Werner Sun, Cornell University for the CLEO-c Collaboration

CKM 2005 Workshop on the Unitarity Triangle 15-18 March 2005, San Diego, CA

Introduction to CLEO-c Branching fraction measurement technique Results Future directions

The CLEO-c Program

- Run CESR at $\sqrt{s} = 3-5$ GeV to study *D* and D_s at threshold, search for exotics at ψ .
- Precise measurements of:
 - D, D_s hadronic branching fractions:
 - Input to V_{cb}, 5% error.
 - For CLEO V_{cb} , 1.4% from $\sigma(\mathcal{B})$, total syst 4.3%
 - D semileptonic B's and form factors:
 - *V_{cs}*, *V_{cd}* to ~ 1% (current errs. 16% and 7%).
 - $c \rightarrow u l_V$ FFs to test LQCD $\rightarrow V_{ub}$ (25% err. \rightarrow 5%).
 - *D* and *D_s* decay constants:
 - Validate LQCD, use to predict $f_B \& f_{Bs} \rightarrow V_{td}$ & V_{ts} (40% error \rightarrow 5%).
- Improve understanding of strong and weak interactions (6 of 9 CKM matrix elements).
- Currently running at $\psi(3770) \rightarrow D\overline{D}$, no D_s .

Current analysis based on 60 pb⁻¹ pilot run from fall '03—spring '04

CLEO-c and **CESR-c**

- CESR III → CESR-c:
 - Added 12 SC wiggler magnets to decrease emittance, damping time.
 - Only 6 were in place for the present dataset.
- CLEO III → CLEO-c:
 - Silicon vertex detector → stereo drift chamber.
 - B field 1.5 → 1.0 T
- Tracking: 93% of 4π
 - 53 layers.
 - $\sigma_p / p \sim 0.6\%$ at 1 GeV.
- Csl calorimeter: 93% of 4π
 - 7800 crystals.
 - $\sigma_E / E \sim 2.2\%$ at 1 GeV.
- 2 sources of particle ID:
 - dE/dx in drift chamber.
 - RICH: 80% of 4π
 - Combined ε (K or π) > 90%.
 - Fake rate < 5%.

- Experimental features:
 - Low multiplicity, bkgs.
 - Simple initial state: $e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$, no extra fragmentation.
 - D tagging—this analysis reconstructs 10% of all D decays.

Werner Sun, Cornell University

Overview of Technique

- Single tag (ST) = one *D* reconstructed: $n_i = N_{DD} \mathcal{B}_i \varepsilon_i$
 - Identifies charge and flavor of other D.
 - Establishes well-defined subsample to search for other D.
- Double tag (DT) = both reconstructed: $n_{ii} = N_{DD} \mathcal{B}_i \mathcal{B}_i \varepsilon_{ii}$

$$B_i \approx \frac{n_{ij}}{n_j} \frac{\varepsilon_j}{\varepsilon_{ij}} \qquad N_{DD} \approx \frac{n_i n_j}{n_{ij}} \frac{\varepsilon_{ij}}{\varepsilon_i \varepsilon_j}$$

- When all information combined, statistical $\sigma(B) \sim \sigma(N_{DD})$.
- Independent of *L* and cross sections.
- Correlated systematic uncertainties cancel.
- Kinematics analogous to $Y(4S) \rightarrow B\overline{B}$: identify D with

$$M_{BC} = \sqrt{E_{beam}^2 - |p_D|^2} \qquad \sigma(M_{BC}) \sim 1.3 \text{ MeV, x2 with } \pi^0$$

$$\Delta E = E_{beam} - E_D \qquad \sigma(\Delta E) \sim 7-10 \text{ MeV, x2 with } \pi^0$$

- Reference modes $D \rightarrow K^-\pi^+$ and $K^-\pi^+\pi^+$ normalize other \mathcal{B} measurements from other experiments.
- Same dataset as ICHEP04, but analysis updated.

Yield Fits

DT signal shape

- Unbinned ML fits to $M_{\rm BC}$ (1D for ST, 2D for DT)
 - Signal function includes ISR, $\psi(3770)$ line shape, beam energy smearing, and detector resolution.
 - Signal parameters from DT fits, then apply to ST.
 - Background: phase space ("ARGUS function").
- D and \overline{D} yields and efficiencies separated.

Werner Sun, Cornell University

Branching Fraction Fitter

- \mathcal{B} and N_{DD} extracted from χ^2 fit.
- Include both statistical and systematic errors (with correlations):
 - All experimental inputs treated consistently.
 - B(D⁰) and B(D⁺) statistically independent, but correlated by common systematics.
- Efficiency, crossfeed, background corrections performed directly in fit.
 - Predicted DCSD explicitly removed as background.
- See arXiv:physics/0503050 for more details.

Fit Inputs: c = E⁻¹ (n - Fb)

Yields	n (<i>n</i>)	V _n (<i>n</i> x <i>n</i>)
Bkgnds	b (<i>b</i>)	V_b (<i>b</i> x <i>b</i>)
Signal	E	V_{E}
effs	(<i>n</i> x <i>n</i>)	$(n^2 \times n^2)$
Bkgnd	F	V _F
effs	(<i>n</i> x <i>b</i>)	(<i>nb</i> x <i>nb</i>)

Werner Sun, Cornell University CKM 2005 Workshop, 15-18 March 2005, San Diego, CA

Systematic Uncertainties

- Dominant error: MC simulation of tracking, K⁰_S, and π⁰ efficiencies.
 - Correlated among all particles of a given type—adds up quickly.
 - Missing mass technique to compare data and MC.
 - Fully reconstruct entire event, but deliberately leave out one particle.
 - Fraction of MM peak where the last particle is found = efficiency.
 - Depends on event cleanliness.

Example: K^- efficiency from $D^0 \rightarrow K^-\pi^+$ $\varepsilon \approx 91\%$ in fiducial volume

0/2.0 /1.3 <i>K</i> 0.2	
/1.3 <i>K</i>).2	
).2	
< 0.2	
1.0–2.5 per D	
1.0 DT	
0.6	
-1.5	
-1.3	
5	
3	
8	

Neutral DT: interference between Cabibbo-favored and DCSD on both sides.

Werner Sun, Cornell University

Fit Results

- Precision comparable to PDG WA.
- Statistical errors: ~2.0% neutral, ~2.5% charged from total DT yields.
- σ (systematic) ~ σ (statistical).
 - Many systematics measured in data, will improve with time.
- Simulation includes FSR, so we measure B (final state + nγ).
 - Using efficiencies without FSR correction would lower B.
- N_{DD} includes continuum and resonant production.
- *L* determination being updated; no new cross sections since ICHEP, yet.
- $N_{D^+D^-}/N_{D^0D^0} = 0.78 \pm 0.02 \pm 0.02.$

Parameter	Value	no FSR
<i>N_D⁰D⁰</i>	(2.01±0.04±0.02)x10 ⁵	-0.2%
$R^0 = K^- \pi^+$	(3.91±0.08±0.09)%	-2.0%
$\mathcal{K}^{-}\pi^{+}\pi^{0}$	(14.9±0.3±0.5)%	-0.8%
$\mathcal{K}^{-}\pi^{+}\pi^{+}\pi^{-}$	(8.3±0.2±0.3)%	-1.7%
$N_{D^+D^-}$	(1.56±0.04±0.01)x10 ⁵	-0.2%
$R^{+} = \mathcal{K}^{-}\pi^{+}\pi^{+}$	(9.5±0.2±0.3)%	-2.2%
$K^{-}\pi^{+}\pi^{+}\pi^{0}$	(6.0±0.2±0.2)%	-0.6%
$K_{S}^{0}\pi^{+}$	(1.55±0.05±0.06)%	-1.8%
$K^0{}_{ m S}\pi^+\pi^0$	(7.2±0.2±0.4)%	-0.8%
$K^0{}_S\pi^+\pi^-\pi^+$	(3.2±0.1±0.2)%	-1.4%
<i>K</i> ⁺ <i>K</i> ⁻ π ⁺	(0.97±0.04±0.04)%	- 0.9 %
$K^{-}\pi^{+}\pi^{0}$ / R^{0}	3.65±0.05±0.011	+1.2%
$\mathcal{K}^{+}\pi^{+}\pi^{+}\pi^{-}/R^{0}$	2.10±0.03±0.06	+0.3%
$K^{-}\pi^{+}\pi^{+}\pi^{0}/R^{+}$	0.61±0.01±0.02	+1.7%
$K_S^{0}\pi^+/R^+$	0.165±0.004±0.006	+0.4%
$K^{0}_{S}\pi^{+}\pi^{0}/R^{+}$	0.75±0.02±0.03	+1.4%
$K^0{}_{\rm S}\pi^+\pi^-\pi^+/R^+$	0.34±0.009±0.014	+0.8%
$K^+K^-\pi^+/R^+$	0.101+0.004+0.002	+1.3%

Werner Sun, Cornell University

Comparison with PDG 2004

- Measurements and errors normalized to PDG.
- PDG global fit includes ratios to $K^{-}\pi^{+}$ or $K^{-}\pi^{+}\pi^{+}$.
- No FSR corrections in PDG measurements.
- Our measurements also correlated (statistics and efficiency systematics).

Werner Sun, Cornell University

Future Directions

- Improve measurements with more data (goal 3 fb⁻¹).
 - 275 pb⁻¹ projected for this summer.
 - Will lower both statistical and systematic uncertainties.
 - With 1 fb⁻¹, < 2% errors on $K^-\pi^+$ and $K^-\pi^+\pi^+$ -systematics limited.
- $D^0\overline{D^0}$ quantum coherence negligible: only flavored final states.
- But with *CP* eigenstates, exploit coherence to probe mixing.
 - $x = \Delta M / \Gamma$, $y = \Delta \Gamma / 2\Gamma$, r = DCS-CF amp. ratio, $\delta = DCS-CF$ phase diff.
 - *Time-integrated* yields sensitive to mixing, e.g. $\Gamma(D \rightarrow CP_{\pm}) \sim 1 \mp y$.
 - Mixing entangled with DCSD, separate with semileptonics.
- Simultaneous fit for hadronic and semileptonic $\mathcal{B}s + x, y, r, \delta$.
- With 1 fb⁻¹: $\sigma(y) \sim 1\%$ (same as current WA) $\sigma(x \sin \delta) \sim 1.5\%$ (current: $x\cos \delta + y\sin \delta < 1.8\%$ at 95% C.L.).
- CLEO-c also sensitive to new physics through rare phenomena.
- See also D. Asner in WG5.

Summary

- One major goal of CLEO-c: measure hadronic *D* branching fractions (preprint to appear as CLNS 05-1914, CLEO 05-6).
- Three more years of data taking.
- Branching fractions in 60 pb⁻¹ competitive with world averages.
 - $\mathcal{B}(D^0 \rightarrow K^-\pi^+)$ measured to 3.1% (PDG 2.4%).
 - $\mathcal{B}(D^+ \rightarrow K^- \pi^+ \pi^+)$ measured to 3.9% (PDG 6.5%).
- Over 4x more data for this summer.
 - Will lower statistical *and* systematic errors.
- D_s branching fractions with $\int s \sim 4.14$ GeV running.
- Reduce error on V_{cb} .
- Contribute to stringent test of CKM unitarity.