Absolute Hadronic D^0 and D^+ Branching Fractions at CLEO-c

Werner Sun, Cornell University for the CLEO-c Collaboration

Particles and Nuclei International Conference 24-28 October 2005, Santa Fe, NM

Introduction to analysis techniques Results from three analyses Future directions

Overview of Techniques

- $e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$
- Kinematics analogous to $Y(4S) \rightarrow B\overline{B}$: identify D with
 - $M_{BC} = \sqrt{E_{beam}^2 |p_D|^2} \quad \sigma(M_{BC}) \sim 1.3 \text{ MeV, x2 with } \pi^0$ $\Delta E = E_D - E_{beam} \quad \sigma(\Delta E) \sim 7 - 10 \text{ MeV, x2 with } \pi^0$
- Single tag (ST): $n_i = N_{DD} \mathcal{B}_i \varepsilon_i$
- Double tag (DT) : $n_{ij} = N_{DD} \mathcal{B}_i \mathcal{B}_j \varepsilon_{ij}$

- Take advantage of low multiplicity, low backgrounds.
- Example: MC tracking, K⁰_S, and π⁰ efficiency systematics:
 - Missing mass (MM) technique to compare data and MC.
 - Fully reconstruct entire event, but deliberately leave out one particle.
 - Fraction of MM peak where the last particle is found = efficiency.

Three Analyses

Double Tag Analysis

DT signal shape

- Unbinned ML fits to $M_{\rm BC}$ (1D for ST, 2D for DT)
 - Signal function includes ISR, $\psi(3770)$ line shape, beam energy smearing, and detector resolution.
 - Background: phase space ("ARGUS function").
- D and \overline{D} yields and efficiencies separated.

Werner Sun, Cornell University

Double Tag Analysis: Fit Results

- Fit includes both statistical and systematic errors (with correlations) [arXiv:physics/0503050].
- Precision comparable to PDG WA.
- σ (systematic) ~ σ (statistical).
 - Many systematics measured in data, will improve with time.
- Simulation includes FSR, so we measure B (final state + nγ).
 - Using efficiencies without FSR correction would lower B.
- *N*_{DD} includes continuum and resonant production.
- $\mathcal{L} = (55.8 \pm 0.6) \text{ pb}^{-1} \rightarrow \text{cross sections}$
 - Consistent with BES measurements.

Parameter	Value	no FSR
$N_{D^0 D^0}$	(2.01±0.04±0.02)x10 ⁵	-0.2%
$\mathcal{B}(K^{-}\pi^{+})$	(3.91±0.08±0.09)%	-2.0%
$\mathcal{B}(\mathcal{K}^{-}\pi^{+}\pi^{0})$	(14.9±0.3±0.5)%	-0.8%
$\mathcal{B}(\mathbf{K}^{-}\pi^{+}\pi^{+}\pi^{-})$	(8.3±0.2±0.3)%	-1.7%
<i>N_{D⁺D⁻}</i>	$(1.56\pm0.04\pm0.01)\times10^{5}$	-0.2%
$\mathcal{B}(K^{-}\pi^{+}\pi^{+})$	(9.5±0.2±0.3)%	-2.2%
$\mathcal{B}(K^{-}\pi^{+}\pi^{+}\pi^{0})$	(6.0±0.2±0.2)%	-0.6%
$\mathcal{B}(K_{S}^{0}\pi^{+})$	(1.55±0.05±0.06)%	-1.8%
$\mathcal{B}(K^0{}_{S}\pi^+\pi^0)$	(7.2±0.2±0.4)%	-0.8%
$\mathcal{B}(K^0{}_{S}\pi^+\pi^-\pi^+)$	(3.2±0.1±0.2)%	-1.4%
<i>B</i> (<i>K</i> ⁺ <i>K</i> [−] π ⁺)	(0.97±0.04±0.04)%	-0.9%
$\sigma(D^0\overline{D^0})$	(3.60±0.07 ^{+0.07} - _{0.05}) nb	-0.2%
$\sigma(D^*D)$	(2.79±0.07 ^{+0.10} -0.04) nb	-0.2%
σ(+-)/σ(00)	0.776±0.024 ^{+0.014} -0.008	+0.0%

Comparison with PDG 2004

- Measurements and errors normalized to PDG.
- PDG global fit includes ratios to $K^{-}\pi^{+}$ or $K^{-}\pi^{+}\pi^{+}$.
- No FSR corrections in PDG measurements.
- Our measurements also correlated (statistics and efficiency systematics).

Werner Sun, Cornell University

$$D^+ \rightarrow K^0_{S,L} \pi^+$$

• Search for asymmetry between K_{S}^{0} and K_{L}^{0} branching fractions.

• Caused by interference: constructive for K_L^0 , destructive for K_S^0 .

- O(10%) predicted by Bigi & Yamamoto [PLB 349 (1995) 363-366].
- Depends on relative strong phases between amplitudes.
- $D^+ \rightarrow K^0_{\ S} \pi^+$ already measured in double tag analysis.
- Now, reconstruct $K_{s}^{0} + K_{L}^{0}$ inclusively in missing mass (MM) recoiling against π^{+} .

Werner Sun, Cornell University

$D^+ \rightarrow K^0_{S,L} \pi^+$: Results

- Asymmetry = $(K_{L}^{0} K_{S}^{0})/(K_{L}^{0} + K_{S}^{0}) = -0.01 \pm 0.04 \pm 0.07$
 - Consistent with O(10%) prediction.
- Also, $\mathcal{B}(D^+ \to \eta \pi^+) = (0.39 \pm 0.03 \pm 0.03)\%$ [PDG2004 has $(0.30 \pm 0.06)\%$].

$\mathbf{D} \rightarrow \mathbf{n}(\pi^+) \mathbf{m}(\pi^0)$

- Study Cabibbo-suppressed D decays with single tags only.
 - Double tag technique not as profitable—statistics too low.
 - Normalize Bs to reference modes.
- MC tuned to match ππ mass spectra in data.
- Background from Cabibbo-favored decays with $K^0_{S} \rightarrow \pi^+\pi^-, \pi^0\pi^0$.
 - Veto $M(\pi\pi)$ near $K^0_{\rm S}$ mass.

Werner Sun, Cornell University

$\mathbf{D} \rightarrow \mathbf{n}(\pi^+) \mathbf{m}(\pi^0)$: Results

Summary and Future Directions

- One major goal of CLEO-c: measure hadronic *D* branching fractions.
 - Reduce error on V_{cb}.
 - Test CKM unitarity.
 - Provide insight on strong interactions (long- and short-distance).
- Branching fractions in current data sample competitive with world averages.
 - $\mathcal{B}(D^0 \rightarrow K^-\pi^+)$ measured to 3.1% (PDG 2.4%).
 - $\mathcal{B}(D^+ \rightarrow K^- \pi^+ \pi^+)$ measured to 3.9% (PDG 6.5%).
 - First observations of some multibody pionic channels.
- Two+ more years of data taking.
 - Will lower statistical and systematic errors.
- D_s branching fractions with $\sqrt{s} \sim 4$ GeV running.