D⁰D⁰ Quantum Correlations, Mixing, and Strong Phases

Werner Sun, Cornell University for the CLEO-c Collaboration

Particles and Nuclei International Conference 24-28 October 2005, Santa Fe, NM

Introduction and motivation Experimental technique Preliminary results and future plans

Effect of Quantum Correlations

- $|D_{1,2}> = p|D^0> \pm q|\overline{D}^0>$
- Because of quantum correlation between D⁰ and D⁰, not all final states allowed. This affects:
 - total rate
 - apparent branching fractions
- Two entangled causes:
 - Interf. between CF and DCSD.
 - *D* mixing: single tag rates depend on $y = \mathcal{B}(CP+)-\mathcal{B}(CP-)$.
- Semileptonic decays tag flavor unambiguously (if no mixing) \rightarrow If one *D* is SL, the other *D* decays as if isolated/incoherent.
- Exploit coherence to probe DCSD and mixing—shows up in *timeintegrated* rates.

Werner Sun, Cornell University

Introduction

- In the Standard Model, D mixing strongly suppressed (CKM and GIM).
- Previous searches:
 - Double semileptonic rates give R_M.
 - Time-dependent Kπ: x and y rotated by δ.
- Current analysis:
 - Uses time-independent yields.
 - Sensitive to *y* at *first order*.
 - No sensitivity to p/q≠1; neglect CPV in decay.
- References:
 - Goldhaber, Rosner: PRD 15, 1254 (1977).
 - Xing: PRD 55, 196 (1997).
 - Gronau, Grossman, Rosner: hep-ph/0103110.
 - Atwood, Petrov: PRD 71, 054032 (2005).
 - Asner, Sun: hep-ph/0507238.

	Definition	Current knowledge
У	$(\Gamma_2 - \Gamma_1)/2\Gamma = \mathcal{B}(CP+) - \mathcal{B}(CP-)$	0.008 ± 0.005
X	$(M_2 - M_1)/\Gamma$ sensitive to NP	x' < 0.018
R _M	(x ² +y ²)/2	< ~1 x 10 ⁻³
r	$K\pi$ DCS-to-CF rel. amplitude	0.061 ± 0.001
δ	$K\pi$ DCS-to-CF relative phase	π(weak) + ? (strong)
Ζ	2cos δ	None
W	2sinδ	None
Я	$\Sigma \mathcal{B}_f r_f z_f$	~-0.01 w/ SU(3)

Single and Double Tag Rates

- Hadronic rates (flavored and CP eigenstates) depend on mixing/DCSD.
- Semileptonic modes (r = δ = 0) resolve mixing and DCSD.
- Rate enhancement factors, to leading order in x, y and r²:

- \mathcal{A} comes from sum over recoil states.
- With C=+1 $D^0\overline{D}^0\gamma$ at higher energy,
 - Can separate \mathcal{A} and y.
 - Sensitivity to wx at first order. Not much info if w is small.

Werner Sun, Cornell University

Experimental Technique

- Use fitter from CLEO-c *D* absolute hadronic branching fraction analysis [physics/0503050].
- Based on MARK III double tag technique using:
 - single tags ($n_i \sim N_{DD} \mathcal{B}_i \varepsilon_i$) and double tags ($n_{ij} \sim N_{DD} \mathcal{B}_i \mathcal{B}_j \varepsilon_{ij}$)

$$A - y \approx \frac{\Gamma_{f,l}}{4\Gamma_{f,X}} \left(\frac{\Gamma_{CP+,X}}{\Gamma_{CP+,l}} - \frac{\Gamma_{CP-,X}}{\Gamma_{CP-,l}} \right) \qquad A - y - rz \approx \frac{\Gamma_{f,\bar{f}}}{4\Gamma_{\bar{f},X}} \left(\frac{\Gamma_{CP+,X}}{\Gamma_{CP+,f}} - \frac{\Gamma_{CP-,X}}{\Gamma_{CP-,f}} \right)$$

$$\Gamma \sim n/\varepsilon \qquad B_i \approx \frac{n_{ij}}{n_j} \frac{\varepsilon_j}{\varepsilon_{ij}} \qquad N_{DD} \approx \frac{n_i n_j}{n_{ij}} \frac{\varepsilon_{ij}}{\varepsilon_i \varepsilon_j}$$

- 281 pb⁻¹ = 1.0 x 10⁶ C=-1 $D^0\overline{D}^0$ pairs.
- Limiting statistics: *CP* tags—our focus is not on *B*s.
- Kinematics analogous to $Y(4S) \rightarrow B\overline{B}$: identify D with
 - $M_{BC} = \sqrt{E_{beam}^2 |p_D|^2} \quad \sigma(M_{BC}) \sim 1.3 \text{ MeV, x2 with } \pi^0$ $\Delta E = E_{beam} - E_D \quad \sigma(\Delta E) \sim 7 - 10 \text{ MeV, x2 with } \pi^0$
- Procedure tested with CP-correlated MC.

Werner Sun, Cornell University

Modes

f

CP+

CP-

 $K^{-}\pi^{+}$

 $K^+\pi^-$

K⁻*K*⁺

 $\pi^{-}\pi^{+}$

 $K^0_{\varsigma}\pi^0\pi^0$

 $K^0_{\varsigma}\pi^0$

 $X - e^+ v$

X+ev

Hadronic Single Tags

- Standard *D* reconstruction.
- Cut on ΔE , fit M_{BC} distribution to signal and background shapes.
- Efficiencies from (uncorrelated) DD Monte Carlo simulations.
- Peaking backgrounds for:
 - $K\pi$ from K/π particle ID swap.
 - Modes with $K^0_{\rm S}$ from non-resonant $\pi^+\pi^-$

	Mode	ε (%)	% bkg	Signal Yield (10 ³)
f	<i>K</i> ⁻ π ⁺	65.7 ± 0.1	0.13	26.0 ± 0.2
'	$K^{\!+}\pi^{-}$	66.7 ± 0.1	0.14	26.3 ± 0.2
	<i>K</i> ⁻ <i>K</i> ⁺	58.9 ± 0.2	0.00	4.70 ± 0.08
CP+	$\pi^-\pi^+$	73.5 ± 0.3	0.00	2.13 ± 0.12
	<i>Κ</i> ⁰ _S π ⁰ π ⁰	14.6 ± 0.1	13.8	3.58 ± 0.17
CP-	<i>K</i> ⁰ _s π ⁰	31.4 ± 0.1	2.2	8.06 ± 0.11

Werner Sun, Cornell University

Hadronic Double Tags

- Cut and count in M_{BC1} vs. M_{BC2} plane, define four sidebands.
- Uncorrelated background: one D misreconstructed (sometimes both).
 - Signal/sideband scale factor: integrate background function from ST fits.
- Mispartition background: particles mis-assigned between D^0 and \overline{D}^0 .

	<i>Κ</i> [_] π ⁺	$K^{+}\pi^{-}$	<i>K</i> − <i>K</i> +	$\pi^-\pi^+$	<i>Κ</i> ⁰ _S π ⁰ π ⁰	<i>Κ</i> ⁰ _S π ⁰	Yields
	2.5 ± 0.4 2.0 ± 0.4	622 ± 7 599 ± 25	62.3 ± 2.1 70.6 ± 8.4	25.3 ± 1.3 24.0 ± 4.9	31.2 ± 1.4 38.7 ± 6.2	78.3 ± 2.3 90.4 ± 9.5	Κ ⁻ π ⁺
$M_{BC}(K^-K^+)$ vs. M_{BC}	$(K^{0}{}_{S}\pi^{0})$	2.7 ± 0.4 2.0 ± 1.4	64.7 ± 2.1 53.0 ± 7.3	30.6 ± 1.4 24.3 ± 5.0	32.3 ± 1.5 37.6 ± 6.2	85.0 ± 2.4 77.0 ± 8.8	$K^{+}\pi^{-}$
			5.2 ± 0.4 -2.2 ± 1.9	4.5 ± 0.3 0.1 ± 0.9	5.7 ± 0.4 1.6 ±1.3	16.0 ± 0.6 39.6 ± 6.3	<i>K</i> − <i>K</i> +
				1.1 ± 0.2 0.2 ± 1.4	2.2 ± 0.2 1.6 ± 1.3	5.8 ± 0.4 14.0 ± 3.7	$\pi^-\pi^+$
1.85			No-QC expectation 1.2 Observed in data 1.0		1.2 ± 0.2 1.0 ± 1.0	7.3 ± 0.4 19.0 ± 4.4	<i>Κ</i> ⁰ _S π ⁰ π ⁰
1.83 1.83 1.84 1.85 1.86 1.87	DAIA 1.88 1.89	L	Observed	III Uala		9.7 ± 0.5 3.0 ± 1.7	κ ⁰ _s π ⁰

Werner Sun, Cornell University

Inclusive Semileptonic Double Tags

- Tag one side with $K\pi$ or *CP* eigenstate, search for electron in remainder of event:
- Fit electron spectrum for signal and background.
 - γ conversion, π^0 Dalitz decay: charge symmetric.
 - Mis-ID: hadrons faking electrons.
 - Mis-tag: estimate from tag-side M_{BC} - ΔE sideband.
- Require right-sign electron charge for $K\pi$ tag.
- Efficiency correction in bins of p_e.

	Tag	е	ε _e (%)	% bkg	Signal Yield
	$K\!\!\!\!/ \pi^+$	—	72.9	5.2	1206 ± 35
	$K^{\!+}\pi^{-}$	+	71.9	2.8	1291 ± 36
	<i>K</i> − <i>K</i> +		69.1	23.2	145 ± 12
	<i>K</i> − <i>K</i> +	+	69.0	34.8	136 ± 12
	$\pi^-\pi^+$		70.0	28.2	78 ± 9
	$\pi^-\pi^+$	+	70.2	29.0	55 ± 7
-	<i>K</i> ⁰ _S π ⁰ π ⁰		69.2	43.8	146 ± 12
	<i>K</i> ⁰ _S π ⁰ π ⁰	+	69.1	65.9	140 ± 12
1	<i>K</i> ⁰ _S π ⁰		69.2	8.2	231 ± 15
	<i>K</i> ⁰ _s π ⁰		75.1	19.1	221 ± 15

Werner Sun, Cornell University

Systematic Uncertainties

- Mixing/DCS parameters determined from ST/DT double ratios:
 - Correlated systematics cancel (tracking/ π^0/K_s^0 efficiencies).
 - Different systematics from branching fraction measurements.
- Uncorrelated systematic uncertainties included in the fit:
 - Yield fit variation.
 - Possible contribution from C=+1 initial state.
 - Can limit with CP+/CP+, CP-/CP- double tags—forbidden for C=-1.
 - Data provides self-calibration of initial state.
 - Signal yields have peaking backgrounds of opposite CP or flavor \rightarrow bias in estimates from uncorrelated MC.
 - Possible bias from CP-correlated MC test.
- Full systematic error analysis in progress.
 - Currently, $\sigma_{syst} \sim \sigma_{stat}$.

Results

- Fit inputs: 6 ST, 14 hadronic DT, 10 semileptonic DT, efficiencies, crossfeeds, background branching fractions and efficiencies.
- χ² = 17.0 for 19 d.o.f. (C.L. = 59%).
- Fitted r^2 unphysical. If constrain to WA, $\cos \delta =$ 1.08 ± 0.66 ± ?.
- Limit on C=+1 contamination:
 - Fit each yield to sum of C=-1 & C=+1 contribs.
 - Include CP+/CP+ and CP-/CP- DTs in fit.
 - No significant shifts in fit parameters.
 - C=+1 fraction = 0.06 ± 0.05 ± ?.
- Some branching fracs competitive with PDG.

Uncertainties are statistical *only*

	Parameter	Value	PDG or CLEO-c
	$N_{D^0 D^0}$	(1.09 ± 0.04 ± ?)x10 ⁶	(1.01 ± 0.02)x10 ⁶
of	<i>Я-у</i>	0.057 ± 0.066 ± ?	
	r ²	-0.028 ± 0.069 ± ?	(3.74 ± 0.18)x10 ⁻³ PDG + Belle + FOCUS
	rz	$0.130 \pm 0.082 \pm ?$	
	R_{M}	(1.74 ± 1.47 ± ?)x10 ⁻³	< ~1x10 ⁻³
	<i>B(K</i> ⁻ π ⁺)	(3.80 ± 0.29 ± ?)%	(3.91 ± 0.12)%
	B(K⁻K⁺)	(0.357 ± 0.029 ± ?)%	(0.389 ± 0.012)%
	$\mathcal{B}(\pi^-\pi^+)$	(0.125 ± 0.011 ± ?)%	(0.138 ± 0.005)%
	$\mathcal{B}(K^0_{S}\pi^0\pi^0)$	(0.932 ± 0.087 ± ?)%	(0.89 ± 0.41)%
	$\mathcal{B}(K^0_{S}\pi^0)$	(1.27 ± 0.09 ± ?)%	(1.55 ± 0.12)%
	<i>B</i> (<i>X</i> ⁻ <i>e</i> +ν)	(6.21 ± 0.42 ± ?)%	(6.87 ± 0.28)%

Werner Sun, Cornell University

Summary and Future Directions

- With correlated D⁰D⁰ system, can probe mixing and DCSD in timeintegrated yields with double tagging technique.
- Simultaneous fit for:
 - Hadronic/semileptonic/CP eigenstate branching fractions
 - Mixing and DCSD parameters.
- Different systematics from previous measurements.
- Method unique to threshold production—unavailable at Tevatron and *B* factories.
- Add $D^0 \rightarrow K^0{}_{s}\pi^+\pi^-$ with Dalitz fits to increase *CP* eigenstate statistics.
- Add wrong-sign e^+ vs. $K^-\pi^+$ double tags to separate r and z.
- Add C=+1 pairs from $D^0D^0\gamma$ in $\int s \sim 4$ GeV running to
 - separate \mathcal{A} and y.
 - probe *x*.
- *Preliminary* first measurements of $\delta(K\pi)$ and \mathcal{A} -*y*.
- Systematic uncertainties being studied.
- Results affect other CLEO-c analyses.