Recent (Charm) Electroweak Results from CLEO

Moriond EW session March 5-12, 2005 La Thuile, Italy

Doris Y. Kim University of Illinois Urbana-Champaign

Content

- I: The CESR-c and the CLEO-c Experiment.
 - II: Leptonic D decays.
- III: Semileptonic D decays: Exclusive
- IV: Semileptonic D decays: Inclusive
 - V: Inclusive BF of D ${\rightarrow} XI\nu$ and $I\nu$
 - VI: CPV from CLEO II.V
 - VII: Summary & Future.

I. The Cornell Electron Storage Ring (CESR)

The CLEO-c Detector

Run plan: ψ' , $\psi(3770)$ and Ds, J/ ψ thresholds.

$CLEO-c \cong CLEO III det.$

• New inner drift chamber replaced old silicon vertex

- 1T B field (old 1.5 T)
- Track (93% of 4π): σ = 0.6% @ 1 GeV

PID: Rich (80% of 4π),
 dE/dx, EM calorimeter,
 muon (> 1GeV)

• Εγ**:** σ = 2.2% @ 1 GeV, 5% @ 100 MeV.

Impact of CLEO-c Measurements

- Leptonic decays give f_D and f_{Ds}
 - validate Lattice QCD and improve f_B
- Semileptonic decays give V_{cs} , V_{cd} and form factors
 - test theoretical form factor models
 - enhance LQCD calculations, which will improve B decay form factors.
 - test CKM unitarity.
- Improved (already) BF measurements of many important normalization modes and more coming.
- Hadronic decays measure strong phases, needed for CPV.
- Initial state is coherent: Ideal for charm mixing and CPV. 3/11/2005 CLEO / Doris Kim

The Future of Precision Flavor Physics

The Goal: Measure all CKM matrix elements and associated phases in order to over-constrain the unitary triangles.

ψ(3770) Analysis Techniques

Fully reconstruct 1st D "the tag", then analyze decay of 2nd D to extract exclusive or inclusive properties.

ψ(3770) ~ DDbar threshold
→ No extra fragmentation = simpler geometry / combination
→ Clean neutrino reconstruction
→ High tagging efficiency at 25% of all D's produced.

$$\psi(3770) \to D^0 \overline{D^0}$$
$$\overline{D^0} \to K^+ \pi^-, D^0 \to K^- e^+ \nu$$

3/11/2005

Examples of CLEO-c Tagged D samples

II. Leptonic Decays: $D^+ \rightarrow \mu^+ \nu$

Tag D µ⁺ Signal D

- A "D- hadronic tag" is required.
- An additional charged track as μ⁺ and no extra shower > 250 MeV as a signal.
- Fit "missing-mass"²

$$MM^{2} = \left(E_{beam} - E_{\mu^{+}}\right)^{2} - \left(-\vec{p}_{D^{-}} - \vec{p}_{\mu^{+}}\right)^{2}$$

3/11/2005

CLEO / Doris Kim

f_D from Absolute Br(D⁺ $\rightarrow \mu^+ \nu$)

 $B(D^+ \to \mu \nu) / \tau_{D^+} = \frac{G_F^2}{8\pi} f_{D^+}^2 m_{\mu}^2 M_{D^+} (1 - \frac{m_{\mu}^2}{M_{D^+}^2}) |V_{cd}|^2$

 V_{cd} (1.1%) from 3 generation unitarity τ_{D+} (0.3%) well-measured

ICHEP 2004

The first CLEO-c paper published. Phys. Rev. D, **70**, 112004 (2004)

• Based on 60 pb⁻¹, 28651 tags and 8 signal events.

Background is ~ one event.

 $B(D^+ \to \mu^+ \nu) = (3.5 \pm 1.4 \pm 0.6) \times 10^{-4}$ $f_{D^+} = (202 \pm 41 \pm 17) \text{ MeV}$

Mark III <290 MeV BES I: 1 event (1998) BES II: 3 events (2004) f_D ~ 371 MeV

CLEO / Doris Kim

3/11/2005

III. Exclusive Semileptonic BF.

Analysis TechniquesFit to UMC $M = \frac{N signal / \mathcal{E} signal}{N tag} = \frac{N signal / \mathcal{E} Xev}{N tag}$ Fit to M_{BC}

- Reconstruct one hadronic D tag.
- Reconstruct a semileptonic signal candidate from the remaining tracks/showers.
- Fit kinematic variable U
 (= Emiss |Pmiss|) for the missing neutrino of the signal.

Signal Candidates of Neutral Semileptonic Modes.

Signal Candidates of Charged Semileptonic Modes.

3/11/2005

The Preliminary Exclusive BF.

Or We Can Do Without D Tagging!

With D Tag, we have cleaner signal sample, but we loose statistics. What if we do not use D Tagging? Let's try for $D \rightarrow K/\pi e v$ decays.

- Require a signal: one e^{\pm} and one K or π
- Assume the other tracks/showeres are coming from the other D, ID them using dE/dx, RICH and EM calorimeter information. \rightarrow Calculate P_{miss}
- Fit on ΔE , M_{BC}

IV. Inclusive Semileptonic BF.

PDG(2004) B(D⁰ \rightarrow X e⁺ v) = 6.87 ± 0.28 % PDG(2004) B(D⁺ \rightarrow X e⁺ v) = 17.2 ± 1.9 %

Analysis Techniques

• Reconstruct one hadronic D tag.

• Signal e+ : ID'd by dE/dx, RICH and E/p calorimeter

• Right/Wrong sign defined by K charge for D0, signal side charge for D+ \rightarrow background subtraction by wrong sign events.

Preliminary

P(e+) spectra

Expected Uncertainty from the First 60 pb⁻¹

3/11/2005

V: Inclusive BF of D \rightarrow XIv, Iv

Electron and Neutrino Spectra are Different!

Conservation of angular momentum $\rightarrow v$ get boost from W+ in the lab frame.

Analysis Techniques

- Reconstruct one hadronic D tag.
- Signal side: ID'd by dE/dx, RICH and E/p calorimeter, than add all.
- Get Pmiss and Mmiss^2.
- K_L suppression is important.

MC Example of Emiss Spectra Red = signal Blue = background Black = Red + Blue

The Inclusive $D \rightarrow XIv$, Iv Candidates

VI. CPV search in $D^0 \rightarrow K_s \pi^+ \pi^-$ from CLEO II.V

- PRL 92, 142001 (2004)
- D0 / D0bar tagged by $D^* \rightarrow D^0 \pi^+$ (slow).
- Standard Model prediction at 10^{-6} for this channel from K mixing. \rightarrow sensitive to new physics
- Dalitz technique studies decay <u>amplitude</u>, not decay rate. \rightarrow sensitivity increase.

$$\mathcal{A}_{CP} = \int \frac{|\mathcal{M}|^2 - |\overline{\mathcal{M}}|^2}{|\mathcal{M}|^2 + |\overline{\mathcal{M}}|^2} dm_{RS}^2 dm_{\pi\pi}^2 / \int dm_{RS}^2 dm_{\pi\pi}^2.$$

 $A_{CP} = -0.009 \pm 0.021^{+0.010+0.013}_{-0.043-0.037}$

3/11/2005

(1) New results on BF $D^+ \rightarrow \mu \nu$ and f_D $B(D^+ \rightarrow \mu^+ \nu) = (3.5 \pm 1.4 \pm 0.6) \times 10^{-4}$ $f_{D^+} = (202 \pm 41 \pm 17)$ MeV

(2) Exclusive BF of semileptonic decays coming (pretty) soon.

- With just 60 pb⁻¹, stastistical power of many decay modes already at the world best.
- The world first events of $D^0 \to \rho^- e^+ v$ and $D^+ \to \omega e^+ v$
- We have two analysis options available: With and wo DTag

(3) Inclusive BF of D \rightarrow Xev and D \rightarrow XIv, Iv coming.

(4) Currently we are running at $\psi(3770)$ with 12 "8-pole" wigglers. More data is coming on $\psi(3770)$, Ds threshold, etc.

▲ f_{Ds}

Question slides

CLEO-c Impacts on the Unitarity Triangle

Now: Theory Uncertainties Dominate

Future: With CLEOc, improved LQCD and 500 fb⁻¹ each from the B factories

3/11/2005

Electron Spectrum of Inclusive Events

time

Very Preliminary

(in D rest frame)

Charged D Meson Tags – Distributions of M_{bc}

~30,000 tagged *D*[±] decays

Preliminary M_{BC} plots from semileptonic BF study