

- The $\psi(3770)$ is about 40 MeV above the *DD* pair production threshold and decay predominantly to *DD* pairs ($\vec{P}_D = -\vec{P}_{\overline{D}}$)
- One of the two D's is reconstructed in a hadronic decay channel. It is called a tag. Two key variables in the tag reconstruction:
 - $\checkmark \quad M_{bc} = \sqrt{E_{beam}^2 P_{candidate}^2}$ $\checkmark \quad \Delta E = E_{beam} - E_{candidate}$
- From the remaining tracks and showers the semileptonic decay is reconstructed
- □ $U \equiv E_{miss} |P_{miss}|$ is used to separate signal from background, where E_{miss} and P_{miss} are the missing energy and momentum approximating the neutrino *E* and *P*. The signal peaks at zero in *U*.
- Account for the background in the signal region of *U*. Account for systematic uncertainties.

 $\psi(3770) \rightarrow D^0 \overline{D}^0$ $\overline{D}^0 \rightarrow K^+ \pi, D^0 \rightarrow K^- e^+ \nu$

July, 2005

Reconstruction of semileptonic decays

Semileptonic n	nodes listed in the table are reconstructed		D M. h			
Electron identi	fication (muons are not used):	1.	Decay Mode $D^0 \rightarrow \pi^- e^+ \nu$			
 ✓ Likelihood fr RICH inform with fake rat ✓ Bremsstrahl recovered 	unction built from E/P, dE/dx and lation (~95% efficient above 300 MeV tes below ~0.2%) ung photons for electrons are	2. 3. 4. 5. 6.	$D^{0} \rightarrow K^{-}e^{+}\nu$ $D^{0} \rightarrow K^{*-}(K^{-}\pi^{0})e^{+}\nu$ $D^{0} \rightarrow K^{*-}(K^{0}_{S}\pi^{-})e^{+}\nu$ $D^{0} \rightarrow \rho^{-}e^{+}\nu$ $D^{+} \rightarrow \pi^{0}e^{+}\nu$ $D^{+} \rightarrow \bar{\nu}^{0}e^{+}\nu$			
Hadron identif RICH (above 70	ication is based on dE/dx (all momenta) and D0 MeV)	7. 8. 9.	$D^+ \rightarrow K^* e^+ \nu$ $D^+ \rightarrow \bar{K}^{*0} (K^- \pi^+) e^+ \nu$ $D^+ \rightarrow \rho^0 (\pi^+ \pi^-) e^+ \nu$			
K^* , ρ , and ω hat window cuts re-	ve 100, 150 and 20 MeV mass espectively	10.	$D^+ \rightarrow \omega (\pi^+ \pi^- \pi^0) e^+ \nu$			
Events with ex	vents with extra tracks are vetoed					
The crossing angle is accounted for and the 4-mometum of the signal D is approximated by $(E_1 - \sqrt{E_1^2 - m_p^2} \hat{p}_{p_1})$						
One entry per U plot per D tag mode is chosen based on $K^*/\rho/\omega$ and/or π^0 masses						
Again, semileptonic decays peak at zero in $U \equiv E_{miss} - \mathbf{P}_{miss} $ Semileptonic branching fractions are obtained as $B(D^0 \rightarrow \pi^- e^+ \nu) = \frac{N(\pi^- e^+ \nu)}{\varepsilon(\pi^- e^+ \nu)N(\overline{D}_{tag}^0)}$ (independent of the luminosity)						
July, 2005	Exclusive Semileptonic D and B decays f	rom	CLEO			

Absolute branching fractions for *D* semileptonic decays

Mode	B (%)	B (%) (PDG)
$D^0 o \pi^- e^+ \nu_e$	$0.26 \pm 0.03 \pm 0.01$	0.36 ± 0.06
$D^0 o K^- e^+ u_e$	$3.44 \pm 0.10 \pm 0.10$	3.58 ± 0.18
$D^0 \to K^{*-}(K^-\pi^0)e^+\nu_e$	$2.11 \pm 0.23 \pm 0.10$	2.15 ± 0.35
$D^0 ightarrow K^{*-}(\bar{K}^0\pi^-)e^+ u_e$	$2.19 \pm 0.20 \pm 0.11$	2.15 ± 0.35
$D^0 \to \rho^- e^+ \nu_e$	$0.19 \pm 0.04 \pm 0.01$	
$D^+ \to \pi^0 e^+ \nu_e$	$0.44 \pm 0.06 \pm 0.03$	0.31 ± 0.15
$D^+ o ar{K}^0 e^+ u_e$	$8.71 \pm 0.38 \pm 0.37$	6.7 ± 0.9
$D^+ \to \bar{K}^{*0} e^+ \nu_e$	$5.56 \pm 0.27 \pm 0.23$	5.5 ± 0.7
$D^+ o ho^0 e^+ u_e$	$0.21 \pm 0.04 \pm 0.01$	0.25 ± 0.10
$D^+ \to \omega e^+ \nu_e$	$0.16^{+0.07}_{-0.06}\pm0.01$	_

- □ *BF* for $D^0 \to \pi^- e^+ v (D^+ \to \overline{K}^0 e^+ v)$ is measured to be somewhat lower (higher) than the PDG value
- □ $B(D^0 \to \pi^- e^+ v) / B(D^0 \to K^- e^+ v) = (7.6\pm0.8 \pm 0.2) \times 10^{-2}$ compares favorably with the CLEO III result of $(8.2\pm0.6\pm0.5) \times 10^{-2}$ (CLEO, PRL **94**, 011802 (2005)). The PDG-04 value for this ratio is 0.101±0.017.
- □ The following two modes $D^0 \rightarrow \rho^- e^+ v$ and $D^+ \rightarrow \omega e^+ v$ are observed for the first time
- Most systematic uncertainties are measured in data and will be reduced with a larger data sample.

July, 2005

Exclusive Semileptonic D and B decays from CLEO

CESR

Isospin tests and a comparison with inclusive measurements

The widths of the isospin conjugate exclusive semileptonic decays are related due to the isospin invariance of the hadronic current. We find:

□ Isospin averaged semileptonic decay widths:

Decay Mode	$\Gamma (10^{-2} \cdot \mathrm{ps}^{-1})$
$D \to K \ e^+ \nu_e$	$8.38 \pm 0.20 \pm 0.23$
$D^0 o \pi^- e^+ \nu_e$	$0.68 \pm 0.05 \pm 0.02$
$D \to K^* \ e^+ \nu_e$	$5.32 \pm 0.21 \pm 0.20$
$D^0 o ho^- e^+ u_e$	$0.43 \pm 0.06 \pm 0.02$

Summing up all exclusive semileptonic branching fractions measured in this analysis we find:

$$\sum B(D_{excl semil}^{0}) = (6.1 \pm 0.2 \pm 0.2)\% \quad and \quad \sum B(D_{excl semil}^{+}) = (15.1 \pm 0.5 \pm 0.5)\%$$

These are consistent with the CLEO-c inclusive semileptonic branching fractions (Ref.: CLEO-CONF 05-3, LP2005-429):

$$B(D_{incl\ semil}^{0}) = (6.5 \pm 0.2 \pm 0.2)\%$$
 and $B(D_{incl\ semil}^{+}) = (16.2 \pm 0.2 \pm 0.4)\%$

which excludes the possibility of additional D semileptonic modes with large branching fractions.

July, 2005

CLEO

- CLEO is finishing studies of $B \rightarrow X_{\mu} l \nu$ with the complete CLEO II, II.V and III data sample of 15.4 million *BB* events. Two analyses are ongoing:
 - ✓ Weak annihilation in $B \to X_{\mu} l v$ (preliminary results are given in the talk by I.Shipsey in "Heavy Flavors" later today)
 - ✓ An update for exclusive $B \rightarrow \pi/\rho \, lv$ and $|V_{ub}|$
- ❑ The technique described in Phys.Rev. D 68 072003 (2003) is used for the latter analysis:
 - ✓ Neutrino reconstruction: $(E_v, P_v) = (|P_{miss}|, P_{miss})$
 - ✓ Rates are measured in q^2 bins (to minimize the uncertainty from form factors on the branching fractions)
 - ✓ Simultaneous binned ML fit to all modes (to account for cross-feed among modes) using isospin or constituent quark model constraints for the branching fractions (results from 2003):

$$B(B^{0} \to \pi^{-}l^{+}\nu) = (1.33 \pm 0.18 \pm 0.11 \pm 0.01 \pm 0.07) \times 10^{-4}; B(B^{0} \to \rho^{-}l^{+}\nu) = (2.17 \pm 0.34^{+0.47}_{-0.54} \pm 0.41 \pm 0.01) \times 10^{-4}$$

✓ $|V_{ub}|$ is extracted using LCSR for $q^2 \in [0;16)$ GeV² and LQCD for $q^2 \in [16; q^2_{max}]$ GeV².

0.01)×10⁻⁴ GeV² and LQCD ⁴

July, 2005

CLEO	Bse	emileptonic decays at CLEO (2)	CESR					
 In the current B → π /ρ l v analysis, significant improvements in the systematic uncertainty related to the B→ρlv modeling are expected: ✓ The lepton momentum cut is lowered to 1.0 GeV from 1.5 GeV ✓ The region cos(θ) < 0.0 is included in the fit 								
 Changes to the q² binning are being considered Recent unquenced lattice calculation for the B → π l v form factor is used (Shigemitsu, <i>et al.</i>, hep-lat/0408019) 								
□ <i>Final</i> CLEO results on $ V_{ub} $ using 15.4 million <i>BB</i> pairs are forthcoming.								
July, 2	2005	Exclusive Semileptonic D and B decays from CLEO	13					

Summary and Outlook

- The analysis of absolute *D* semileptonic branching fractions from the first ~56 pb⁻¹ data sample collected at the $\psi(3770)$ by CLEO-c is completed. All measurements are most precise to date.
- CLEO is finishing studies of $B \rightarrow X_u l v$ with the full Y(4S) data set of 15.4 million *BB* events
- Analyses of semileptonic form factors with 280 pb⁻¹ of new CLEO-c data are ongoing.
- CLEO-c is going to collect a much larger data sample at the $\psi(3770)$ as well as data above the $D_s D_s$ threshold. This data sample will play an important role in particle physics as
 - \checkmark validation and calibration data for LQCD and other theories and models
 - \checkmark input data to the *B* factories and other experiments increasing their potential in the search for new physics

Extra slides

July, 2005

CLEO-c prospects (Ref.: CLNS 01/1742)

- □ The ~56 pb⁻¹ data sample collected in fall-2003/winter-2004 by the CLEO-c detector already gives measurements of absolute branching fractions for all modes considered today with uncertainties smaller than the uncertainties in PDG-2004.
- CLEO-c is going to collect a much larger data sample at the $\psi(3770)$ and data at slightly higher energies for studies of D_s mesons.
- An important aspect of the CLEO-c program is testing the LQCD predictions as well as predictions of models or other theories for semileptonic form factors:
 - ✓ CLEO-c will measure form factors at a percent level in $P \rightarrow P$ transitions and at a few percent level in $P \rightarrow V$ transitions.
 - ✓ Theory (e.g., LQCD) predictions for the absolute normalization of form factors (e.g., $f_+(0)$) can be tested if one assumes the unitarity of the CKM matrix (V_{cs} and V_{cd} become known to 0.1% and 1.0% respectively)
 - ✓ Theory can be tested further without uncertainties associated with the CKM couplings or assumptions of the CKM unitarity using the following ratio of decay rates $\Gamma(D^+ \rightarrow \pi(K) \ lv) / \Gamma(D^+ \rightarrow lv)$
- □ Using future CLEO-c measurements of branching fractions for $D \rightarrow \pi e v$ and $D \rightarrow K e v$ (1.2% and 1.5% uncerts) and the world averages for *D* meson lifetimes, and assuming theory errors on γ_s and γ_d , of 3%, the following uncertainties for V_{cs} and V_{cd} from *D* semileptonic decays at CLEO-c sample are possible: $\frac{\delta V_{cs}}{V_{cs}} \approx 1.6\%$ and $\frac{\delta V_{cd}}{V_{cd}} \approx 1.7\%$

calculation for $D \rightarrow \pi/Kev$ (PRL **94**, 011601 (2005))

July, 2005