CLEO Results From Y Decays

J.E. Duboscq Cornell University

- The Y system
- CLEO Detector
- CLEO Data Sample
- B_s Production at the $\Upsilon(5S)$
- Υ→ττ, ee
- Direct Photons in Y Decay
- $\Upsilon(1S) \rightarrow h^+ h^- \gamma$
- $\chi_b' \rightarrow \chi_b$ Transition

J.E.Duboscq

CLEO Y and χ_b Results

2

The Y System

- The Υ is a bound state of $b\overline{b}$
- CESR collides e+e- to produce Y(nS) states
- For n>= 4, the Y decay to B mesons and b-baryons
- For n=1,2,3 below B threshold bb annihilate - can produce hadrons or lepton pairs
- Also cascades to other $n^{(2s+1)}L_{j}$ states mostly via γ or $\pi \pi$ emission

CLEO Y and χ_h Results

The Y System Part Two

The Y are part of the bottom-onium family QCD analog of positronium

b quark is heavy → Non relativistic QM

Are Upsilons Interesting?

Most Upsilon decays unaccounted for: ΣBR(Y(Is)) < 10% in PDG

Another place to study the b quark

Non perturbative QCD laboratory if LQCD right here it might be right elsewhere

5

The CLEO III Detector

J.E.Duboscq

CLEO Y and χ_{b} Results

6

CLEO Upsilon Datasets

CLEOIII has the largest world sample of clean Y events below b threshold

Also has off resonance and scan data

CLEO has also collected 0.42 fb⁻¹ at the $\Upsilon(5S)$

7

J.E.Duboscq

CLEO Y and χ_{b} Results

Topic I of 6

Bs Production at $\Upsilon(5S)$

Bs Production at the $\Upsilon(5S)$

- The 5S should produce BsBs, BsBs*, Bs*Bs*
 interesting place to run for strange B Factories
- But no Bs yet observed at the 5S
- Expect B(Bs→DsX) = 92 ±11% and B(B→DsX)=10.5± 2.6%
- CLEO measures Ds→φπ production vs momentum for Off 4s, On 4s, On 5s
- Excess at 5S is from $B_s(*)\overline{B}_s(*)$

$$Pr^{elim}B(\Upsilon(5S) \rightarrow B_{s}^{(*)}\overline{B}_{s}^{(*)}) = 21 \pm 3 \pm 9\%$$

9

Bs Production at the $\Upsilon(5S)$ Exclusive Search

- Search for Bs $\rightarrow \psi \phi/\eta/\eta'$ and Bs $\rightarrow Ds^{(*)} \pi^{-}/\rho^{-}$
- Clear dominance of Bs*Bs* (expected)

J.E.Duboscq

CLEO Y and χ_{b} Results

Y Decays to 2 Leptons

- $\Upsilon \rightarrow I^+I^-$ interesting as a probe of the bby vertex
- Universality of (e,e), (μ,μ), (τ,τ) final states (N.B.: Phase space effects tiny)
- Probe of possible new physics (eg: Sanchis-Lozano hep-ph0503266)
- Test Bed for Lattice QCD (See talk by C. Davies on 7/26)

This Morning's Status

PDG2005	IS	2S	3S
B(ee)	2.38±0.11%	1.92±0.17%	seen
Β(μμ)	2.48±0.05%	1.93±0.17%	2.18±0.21%
Β(ττ)	2.67±0.15%	1.7±1.6%	?

B(ee) driven by older experiments - CBAL, ARGUS, CLEO B($\mu\mu$) driven by CLEO 05 : PRL 94:012001,2005 B($\tau\tau$) driven by old CLEO results

J.E.Duboscq

CLEO Y and χ_b Results 13

Topic 2 of 6

New Analysis of $\Upsilon \rightarrow \tau \tau$

CLEO Υ and χ_b Results

New Analysis of $\Upsilon \rightarrow \tau \tau$

- Follow the $\Upsilon \rightarrow \mu \mu$ technique:
 - Identify (TT) + (μμ) On & Off
 Resonance (use I Prong Tau decays = 75% of all τ decays)
 - Signal = On Resonance S* Off Resonance S*

$$S = \frac{L_{On}}{L_{Off}} \left(\frac{E_{Off}}{E_{On}}\right)^2$$

- Account for Interference Off Resonance
- Cross Check $B(\Upsilon(4S) \rightarrow I^+I^-)=0$
- Quote B(ττ)/B(μμ)

J.E.Duboscq

CLEO Y and χ_b Results 16

J.E.Duboscq

CLEO Y and χ_b Results 17

Raw Yields	IS	25	35	
μμ	345020±1883	123185±1637	83545±2381	
тт	28113±534	11082±473	7544±690 😽	

• Correct Raw Yields for Efficiency, Interference, Cascade Decays $R(1S) = 1.06 \pm 0.02 \pm 0.00 \pm 0.03$ $R(2S) = 1.00 \pm 0.03 \pm 0.12 \pm 0.03$ $R(3S) = 1.05 \pm 0.07 \pm 0.05 \pm 0.03$

Errors are Stat, Cascade Feedthrough, Systematic Cascade + Systematics will improve substantially in final result *Central values will also move a little*

Caveat for Higgs Search (Sanchis-Lozano hep-ph0503266): $\in (\tau \tau \gamma) \neq \in (\tau \tau)$

Topic 3 of 6

Investigation of $\Upsilon \rightarrow ee$

CLEO Υ and χ_b Results

- $\Gamma(\Upsilon \rightarrow ee)$ probes Wave Function (LQCD)
- Direct Measurement of B(ee) using On-S*Off is hindered by LARGE Bhabha Cross Section + is one step removed from $\Gamma(\Upsilon \rightarrow ee)$
- At CLEO we can measure the Line Shape $\sigma(ee \rightarrow \Upsilon \rightarrow X)$ vs E_{cm}
- Line Shape is a convolution of:
 - Υ Physics $\Gamma(ee \rightarrow \Upsilon) \approx keV$
 - ISR Kuriev+Fadin

20

Accelerator Beam Energy Spread ≈ 4 MeV

Investigation of $\Upsilon \rightarrow ee$

- Method:
 - Weekly Scans over Resonances - Revisit Large Derivative Points for Energy Calibration
 - Select "hadronic" events
 - Energy cut for 2γ backgrounds (log s)
 - Correct for T, cosmics, beam gas
 - Check Efficiencies with Cascade Decays

000

 $Y(nS) \leq$

Dominant Syst = Lumi = 1.8%

J.E.Duboscq

CLEO Y and χ_b Results 22

Topic 4 of 6

Direct Photons in Y Decays

CLEO Υ and χ_b Results

- Below B meson threshold, Y decays can occur via:
 - virtual photon (γ*)
 3 gluons (ggg)
 - 2 gluons + 1 direct photon (ggY)
 - Cascades
- Isolating the Direct Photon gives info about $(b\overline{b})$ Wavefunction & $\alpha(EM) + \alpha(QCD)$

$$R\gamma = \frac{N(gg\gamma)}{N(ggg)} = f(q_b, \alpha_{EM}, \alpha_{QCD})$$

• We look for hadronic events with a nice isolated photon

Direct Photons in Y Decays

J.E.Duboscq

Direct Photons in Y Decays

10⁵

10⁴

 10^{3}

 10^{2}

10

0.20

25

0.45

z

Fit Subtracted Spectrum to an exponential for "left over" photons + direct photon model (Field or Garcia+Soto)

N.B.: Models are strictly speaking for IS only

I.E.Duboscq

$$R\gamma = \frac{N(gg\gamma)}{N(ggg)} = f(q_b, \alpha_{EM}, \alpha_{QCD})$$
N(ggg) determined from N(Y), PDG and MC
$$R_Y(1S) = 2.90 \pm 0.007 \pm 0.22 \pm 0.15\%$$

$$R_Y(2S) = 3.49 \pm 0.03 \pm 0.58 \pm 0.18\%$$

$$R_Y(3S) = 2.88 \pm 0.03 \pm 0.38 \pm 0.12\%$$

Errors are Stat, Syst, Model Syst Error dominated by π⁰ modeling

- R(IS) consistent with previous values, similar syst, but smaller stat error
- First measurement of R(2S), R(3S)

J.E.Duboscq

CLEO Y and χ_b Results 28

Topic 5 of 6

$\Upsilon(1S) \rightarrow h^+h^-\gamma$

CLEO Υ and χ_b Results

$\Upsilon(1S) \rightarrow h^+h^-\gamma$

- Radiative decays probe 2 gluon structure
- Many interesting results from J/ψ
 - tensor states f₂(1270), f₂'(1525)
 - glueball candidate f_l(2220)

- X(1860) = pp threshold enhancement (BES)
- In $\Upsilon(1S)$, rates suppressed by $(q_b m_c/q_c m_b)^2 \approx 0.025$
- We look for $\Upsilon(1S) \rightarrow h^+ h^- \gamma$
 - Require $E\gamma > 4 \text{ GeV}$
 - h^{\pm} IDed as $\pi/K/p$ with dE/dx and RICH
 - Also use CM 4-momentum constraint for PID
 - Use Off Resonance Subtraction

J.E.Duboscq

$\Upsilon(1S) \rightarrow h^+h^-\gamma$

J.E.Duboscq

CLEO Y and χ_b Results

31

$\Upsilon(1S) \rightarrow h^+h^-\gamma$

- Fit decay angles get decay helicities for f2(1270) & f2'(1525) predominantly helicity 0
- $\int_{100}^{100} \gamma r^{2}(1270) = 10.2 \pm 0.8 \pm 0.7 \times 10^{-5}$ B(Y(1S) $\rightarrow \gamma f2'(1525)) = 3.7 \pm 0.9 + 0.7 \pm 0.8 \times 10^{-5}$ B(Y(1S) $\rightarrow \gamma KK) = 1.14 \pm 0.08 \pm 0.10^{-5}$ • Fit Mass to spin dependent relativistic BW 2GeV<M(KK)< 3GeV $B(\Upsilon(IS) \rightarrow \gamma f2(980) \rightarrow \pi \pi) < 3 \times 10^{-5}$ $B(\Upsilon(IS) \rightarrow \gamma f2(2050) \rightarrow \pi\pi) < 0.6 \times 10^{-5}$ $B(\Upsilon(IS) \rightarrow \gamma f0(1710) \rightarrow KK) < 0.7 \times 10^{-5}$ $B(\Upsilon(IS) \rightarrow \gamma pp) < 0.6 \times 10^{-5}$ 2GeV<M(pp)< 3GeV Limits on $f_1(2200)$ and X(1860) around 10⁻⁶ Complimentary analysis under way for $\pi^0 \pi^0 \gamma$, $\eta \eta \gamma$, $\pi^0 \eta \gamma$ All results preliminary CLEO Y and χ_h Results 32 J.E.Duboscq EPS2005

Topic 6 of 6

Observation of $\chi_b(2P) \rightarrow \chi_b(1P)\pi^+\pi^-$

CLEO Y and χ_b Results

 $\chi_{h}(2P) \rightarrow \chi_{h}(1P)\pi^{+}\pi^{-}$

Search for $\gamma \pi \pi \gamma$ (ee) ($\mu \mu$)

Dominant backgrounds $\Upsilon(3S) \rightarrow \Upsilon(2S) \pi^{+}\pi^{-}$ Same final state $\downarrow \rightarrow \chi_{b} \gamma$ $\Upsilon(3S) \rightarrow \chi_{b} \gamma \xrightarrow{} \Upsilon(1S) \gamma$ $\downarrow \rightarrow \Upsilon(1S) \omega$ Lose a γ $\Upsilon(3S) \rightarrow \Upsilon(2S) \pi^{+}\pi^{-} \xrightarrow{} \pi^{+}\pi^{-}\pi^{0}$ $\downarrow \rightarrow \Upsilon(1S) \pi^{0}\pi^{0}$ Lose 2 γ

34

CLEO Y and χ_{b} Results

Single Pion

elesse Di-Pion

J.E.Duboscq

$\chi_b(2P) \rightarrow \chi_b(1P)\pi^+\pi^-$: Di-pion

7 Events Observed 1.2 Expected background Size of $\Upsilon(2S)$ is as expected $\epsilon \approx 4.5\%$

$\chi_b(2P) \rightarrow \chi_b(1P)\pi^+\pi^-$ Results

- Single Pion Analysis see 17 events, background expected to be 3.3 events, €≈8.5%
- Single Pion + Di-Pion significance $\approx 6\sigma$

First Observation of a $\pi \pi$ transition outside of ${}^{3}S_{I}$ system $\chi^{e^{iininary}}\Gamma(\chi_{b}(2P) \rightarrow \chi_{b}(1P)\pi^{+}\pi^{-}) \approx 0.9 \text{ keV}$

J.E.Duboscq

CLEO Y Results Summary

- First Observation of Bs Production in $\Upsilon(5S)$ decays
- First Observation of $\Upsilon(3S) \rightarrow \tau \tau$
- Precision results on $B(\Upsilon \rightarrow \tau \tau)/B(\Upsilon \rightarrow \mu \mu)$
- Direct Measurements of $\Gamma(\Upsilon \rightarrow ee)$
- Measurements of Direct Photons in $\Upsilon \rightarrow X \gamma$
- Measurements of substructure in $\Upsilon(1S) \rightarrow h^+h^-\gamma$
- First Observation of $\chi_b' \rightarrow \chi_b \pi^+ \pi^-$

Many more CLEO results still in the pipeline - stay tuned