Evidence for the Bs Meson at the Y(5S) Resonance

Victor Pavlunin Purdue University CLEO collaboration

Presented at First Meeting of the APS Topical Group on Hadronic Physics, FNAL, Oct 24-26, 2004

- Introduction
- □ The CLEO detector and Y(5S) data sample
- Analysis techniques:
 - ✓ Exclusive approach
 - ✓ Inclusive approach
- Summary

CLEO CESR

October, 2004

Introduction (1)

- □ The *Y*(5*S*) resonance was discovered by CLEO and CUSB collaborations operating at CESR in 1985.
- □ The *Y*(5*S*) resonance is massive enough to decay into the following channels:

 $B\overline{B}, \ B\overline{B^*}, \ B^*\overline{B^*}, \ B^*\overline{B^*}, \ B\overline{B}\pi, \ B\overline{B}^*\pi, B^*\overline{B^*}\pi, B\overline{B}\pi\pi,$

 $B_s \overline{B_s}, B_s \overline{B_s^*}, B_s^* \overline{B_s^*}$

- *No* conclusive evidence for Bs production at the *Y*(*5S*) was found in 116/pb of data collected in 1985.
- Knowledge of Bs production at the Y(5S) is essential for assessing the potential of Bs physics at a high luminosity electron-positron collider.
- □ The three channels with *Bs* mesons are in *CDF* 2004: the focus of two current CLEO studies. $M_{Bs} = (5.3660 \pm 0.0008(stat + sys)) GeV$

October, 2004

Evidence for the Bs Meson at the Y(5S) Resonance

2

Introduction (2)

- □ Two papers exist that describe the hadronic cross section above the *Y*(4*S*) resonance:
 - ✓ CLEO: PRL **54,** 381 (1985)
 - ✓ CUSB: PRL **54**, 377 (1985)
- □ The cross section above the *Y*(*4S*) resonance is described reasonably well by Unitarized Quark Model (S.Ono et.al., Phys.Rev.D **34**, 186 (1986)). The model predicts:
 - $\checkmark Y(5S) \rightarrow B^*B^* \text{ or } Bs^*Bs^*,$
 - ✓ The total Bs cross section of $Y(5S) \sim 1/3$.
 - ✓ $\sigma(e^+e^- \rightarrow Y(5S))$ ~ 0.35 nb (compare this to the b-quark cross section in pp collisions)

October, 2004

The Data Sample and CLEOIII detector

October, 2004

October, 2004

EXCLUSIVE APPROACH

October, 2004

Overview of exclusive method

October, 2004

Analysis backgrounds

Important selection criteria

✓ $R2 = H_2/H_0$ – ratio of Fox-Wolfram moments of the event ✓ θ_{thrust} is the angle between the thrust axis of the B_s candidate and the thrust axis of the rest of the event

Ass window cuts for wide particles such as ρ , K^* .

□ $\cos(\theta_{helicity})$ for the P → V(pp)P modes in the D_s reconstruction

 $R2 \equiv H_2/H_c$ **BB**bar events The continuum⁻ 0.25 0.50 0.75 $cos(\theta_{thrust})$ The continuum **B** mesons $\theta_{\rm helic}$ K^+

October, 2004

"Gold plated" modes

- Search for very clean modes having extremely high S/B ratio (unfortunately with small branching fractions).
- □ The best candidate mode is $B_s \to J/\psi \phi$, analogous to $B^0 \to J/\psi K_s$. The search is made for $B_s \to J/\psi \eta$ and $B_s \to J/\psi \eta$ as well.
- □ J/ψ is reconstructed in $\mu\mu$ and *ee* channels, the following clean channels are used for other particles: $\varphi \to KK$, $\eta \to \gamma\gamma$, $\eta' \to \eta\pi^+\pi$.
- Expect to find only a few signal counts, assuming branching fractions similar to those for ordinary B.

One of the signal events

Reconstruction of $Bs \rightarrow Ds(*) \pi/\rho^{-1}$

□ Modes for <i>Bs</i> :	BRs are from the corresponding BRs for <i>B</i> ⁰	□Modes for <i>Ds(*)</i> :	
$\begin{array}{c cccc} \hline & Decay & Mode & \mathcal{B} \times 10^{-3} \\ \hline & \bar{B}_s \to D_s \pi^- & (3.0 \pm 0.4) \\ & \bar{B}_s \to D_s \rho^- & (7.8 \pm 1.4) \\ & \bar{B}_s \to D_s^* \pi^- & (2.8 \pm 0.2) \\ & \bar{B}_s \to D_s^* \rho^- & (7.3 \pm 1.5) \end{array}$		Decay Mode $D_s \rightarrow K^+ \bar{K}^0$ $D_s \rightarrow K^+ K^{*0}$ (892) $D_s \rightarrow \phi \pi^+$ $D_s \rightarrow \phi \rho^+$ $D_s^* \rightarrow D_s \gamma$	$\begin{array}{c} \mathcal{B} \ (\%) \\ \hline (3.6 \pm 1.1) \\ (3.3 \pm 0.9) \\ (3.6 \pm 0.9) \\ (6.7 \pm 2.3) \\ \hline (94.2 \pm 2.5) \end{array}$

□ The choice of $B_s \rightarrow D_s(*) \pi/\rho$ and the four "clean" D_s modes listed above is motivated by the difficulty of background modeling.

□ Monte Carlo simulation using the branching fraction above predicts a total of 9 events can be reconstructed in these channels, subject to statistical fluctuations.

October, 2004

Distributions in the Y(5S) data

We find 8 events in the same upper signal box and estimate that the level of background is approx. 1.0 event (or less, prelim). Therefore, we have established an evidence for the *Bs* meson in the $Ds^{(*)} \pi / \rho$ modes as well

The beam energy scale is being studied for the Bs* mass measurement.

October, 2004 Evidence for the Bs Meson at the Y(5S) Resonance

Summary for Exclusive Reconstructrion

- □ We have shown evidence for the *Bs* meson in the CLEO *Y*(5*S*) data using exclusive reconstruction in two different types of *Bs* decay modes.
- □ The *Y*(5S) resonance favors decays to *Bs*^{*}*Bs*^{*} over those to *BsBs* or *BsBs*^{*}, which is consistent with model predictions.
- □ We intend to add the semileptonic modes $Bs \rightarrow Ds^{(*)} l v$ in order to improve measurement of the total Bs production rate at the *Y*(5*S*) energy.
- Expect the results for
 - $\checkmark \sigma(B_s \overline{B_s}) / \sigma(B_s^* \overline{B_s^*}) \text{ and } \sigma(B_s^* \overline{B_s} + B_s \overline{B_s^*}) / \sigma(B_s^* \overline{B_s^*})$
 - \checkmark the mass of Bs^*

✓ and, possibly, the total Bs production rate at Y(5S) energy from this approach to be available in early spring 2005.

October, 2004

INCLUSIVE APPROACH

More information is available in arXiv:hep-ex/0408070

October, 2004

Overview of the inclusive method

- $\checkmark \quad \mathcal{B}(Bs \to Ds X) = (94 \pm 30)\%$
- $\checkmark \quad \mathcal{B}(B \to Ds X) = (10.5 \pm 2.6)\%$

Inclusive analysis steps:

- Measure Ds yields in bins of $x = |P_{Ds}|/E_{beam}$ in the continuum, *Y*(4*S*) and *Y*(5*S*) data.
- □ Measure $\mathcal{B}(Y(4S) \rightarrow DsX)$ and $\mathcal{B}(Y(5S) \rightarrow DsX)$ by subtracting properly scaled and normalized continuum yields from the Y(4S) and Y(5S) yields.
- □ Extract $\mathcal{B}(Y(5S) \to Bs^{(*)} Bs^{(*)})$ from the measured $\mathcal{B}(Y(4S) \to DsX)$ and $\mathcal{B}(Y(5S) \to DsX)$.

October, 2004

$D_s \rightarrow \phi \pi^+$ inclusive reconstruction

- □ The decay sequence $Ds \rightarrow \varphi \pi^+$, $\varphi \rightarrow K^+K^-$ is used.
- □ The reconstruction efficiency is ~30% and it is independent of the beam energy for the three data sets.
- □ The plots show raw *Ds* yields in the *Y*(5*S*) and *Y*(4*S*) data.
- □ The raw *Ds* yields are corrected for the contribution from the continuum. The continuum data are scaled in the following way:

$$S = \frac{L}{L_{cont}} \cdot \left(\frac{E_{cont}}{E}\right)^2$$

Ds spectra at Y(4S) and Y(5S)

Results for the inclusive method

- The plot shows an excess in the *Ds* production at the *Y*(5S) over that at the *Y*(4S). The excess is interpreted as an evidence for *Bs* at the *Y*(5S).
- □ From $\mathcal{B}(Y(4S) \rightarrow DsX)$) and $\mathcal{B}(Y(5S) \rightarrow DsX)$), CLEO makes a model dependent estimate:

 $B(Y(5S) \rightarrow B_s^{(*)} B_s^{(*)}) = (21 \pm 3(stat) \pm 9(sys))\%$

The largest contributors to the systematic error are \checkmark the uncertainty associated with the continuum subtraction \checkmark the error from the uncertainty in $\mathcal{B}(Ds \rightarrow \varphi \pi)$. Expect improvements in the systematic error

October, 2004

Summary and outlook

- Evidence for the B_s meson at the Y(5S) resonance is found in both exclusive and inclusive approaches
- □ It is found that

✓ $B(Y(5S) \to B_s^{(*)} \overline{B_s^{(*)}}) = (21 \pm 3(stat) \pm 9(sys))\%$

✓ The Y(5S) decays predominantly to Bs^{*}Bs^{*} rather than to BsBs or BsBs^{*}.

□All results are preliminary

□ Further studies are ongoing. Expect finalized results in the near future (spring, 05).