Spectroscopy of Fleavy Quarkonia

Holger Stöck University of Florida

Representing the CLEO Collaboration

6th International Conference on Hyperons, Charm and Beauty Hadrons

Chicago, June 28 – July 3 2004

Why Spectroscopy of Heavy Quarkonia?

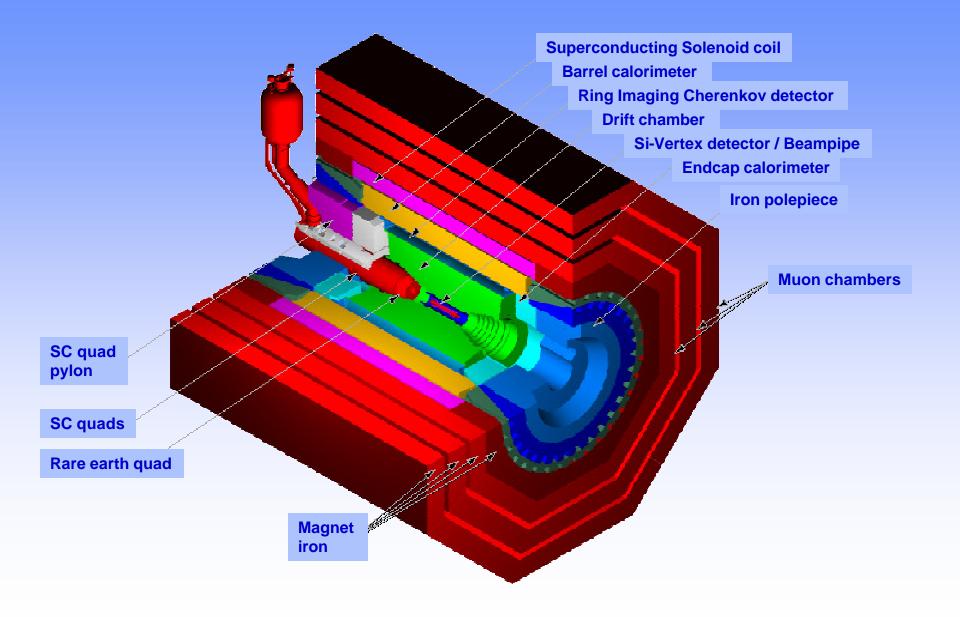
Heavy quarkonia – bound states of two charm and two bottom quarks – are still a very rich exploration site:

- No bb singlet states are known
- Only very few hadronic and radiative decays are known

Charm and bottom quarks have large masses (~1.5 and ~4.5 GeV)

- velocities of quarks in hadrons are non-relativistic
- strong coupling constant α_s is small (~0.3 for $c\bar{c}$ and ~0.2 for $b\bar{b}$).

Hence, heavy quarkonia provide the best means of testing the theories of strong interaction:


- QCD in both pertubative and non-pertubative regimes
- QCD inspired purely phenomenological potential models
- NRQCD and LatticeQCD

Topics

Bottomonium Spectroscopy New $\Upsilon(1^{3}D_{2})$ State Branching Ratio $B(\Upsilon(nS) \rightarrow \mu^{+}\mu^{-})$ $\Upsilon(1S) \rightarrow J/\psi + X$ Hadronic Transitions from $\Upsilon(3S)$

Charmonium SpectroscopyLatest Results from $\eta_c(2S)$ Radiative Transitions from $\psi(2S)$ X(3872)

The CLEO III Detector

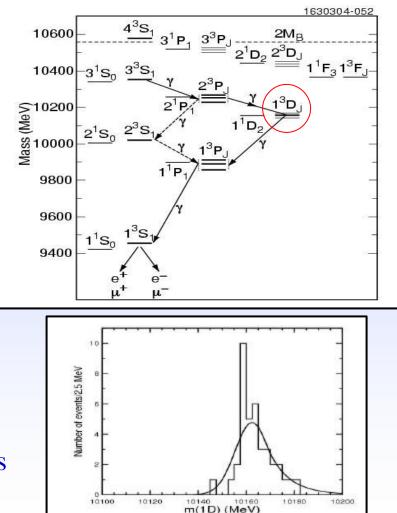
CLEO Data Sets

E _{cm} (GeV)	State	# Events (10 ⁶)	Experiment
9.46	Υ(1S)	2	CLEO II
		20	CLEO III
10.02	Υ(2S)	0.5	CLEO II
		10	CLEO III
10.36	Υ(3S)	0.5	CLEO II
		5	CLEO III
3.69	ψ(2S)	3	CLEO III / CLEO-c

Observation of ; (1D) State of Bottomonium

The $\Upsilon(1D)$ state was observed in the following four photon cascade:

 $i(3S) \rightarrow gc(2P) \rightarrow gi(1D) \rightarrow gc(1P) \rightarrow gi(1S) \rightarrow e^+e^-, mm$


34.5 ± 6.4 signal events were observed Significance of the signal is **10.2 s** Consistent with J = 2 assignment $\rightarrow \Upsilon(1^3D_2)$

$$M(((1D))) = 10161.1 \pm 0.6 \pm 1.6 \text{ MeV}$$

 $B(gggg[+]^{-})_{i(1D)} = (2.6 \pm 0.5 \pm 0.5) \times 10^{-5}$

Theoretical prediction of the branching ratio by Godfrey and Rosner: $4x10^{-5}$

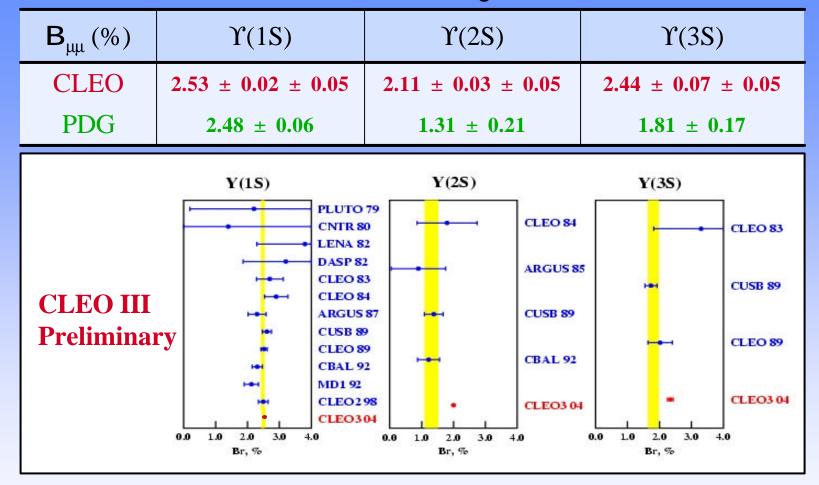
Mass is consistent with predictions from potential models and LatticeQCD calculations

Measurement of $B(; (nS) \rightarrow ntm)$

Leptonic (Γ_{II}) and total widths (Γ) of $\Upsilon(n^3S_1)$ resonances are not very well established. They have 4 - 16% relative errors.

 Γ and Γ_{ee} are used in many PQCD calculations

Precise measurement of $B(I^+I^-)$ allows to determine Γ of $\Upsilon(nS)$ precisely (precise Γ_{ee} measurement is also needed, expected soon from CLEO):


 $\Gamma = \Gamma_{\parallel} / B_{\parallel} = \Gamma_{ee} / B_{\mu\mu}$ (assuming lepton universality)

 \rightarrow Measure decay rate to muon pairs relative to hadronic decay rate:

$$\overline{B}_{mm} = \frac{\Gamma_{mm}}{\Gamma_{had}} = \frac{N(Y \to m^+ m^-)/e_{mm}}{N(Y \to hadrons)/e_{had}}$$

$$B_{mm} = \frac{\Gamma_{mm}}{\Gamma} = \frac{\Gamma_{mm}}{\Gamma_{had}(1+3\Gamma_{mm}/\Gamma_{had})} = \frac{\overline{B}_{mm}}{1+3\overline{B}_{mm}}$$

Measurement of B(; (nS) -> utim)

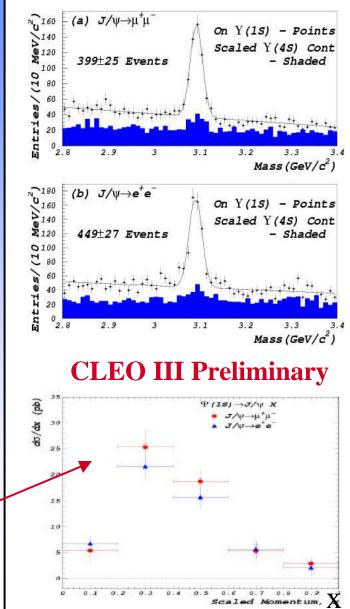
 $\Upsilon(1S)$ branching ratio agrees with the PDG average.

Significant discrepancy observed for $\Upsilon(2S)$ and $\Upsilon(3S)$. The new branching ratios would result in a significantly lower total decay width for $\Upsilon(2S)$ and $\Upsilon(3S)$

Production of J/y in 3 (1S) Decays

10 years ago the CDF experiment reported anomalously high rates of J/ψ and $\psi(2S)$ production in pp collisions.

In $\Upsilon(1S)$ data a J/ ψ can be produced by:

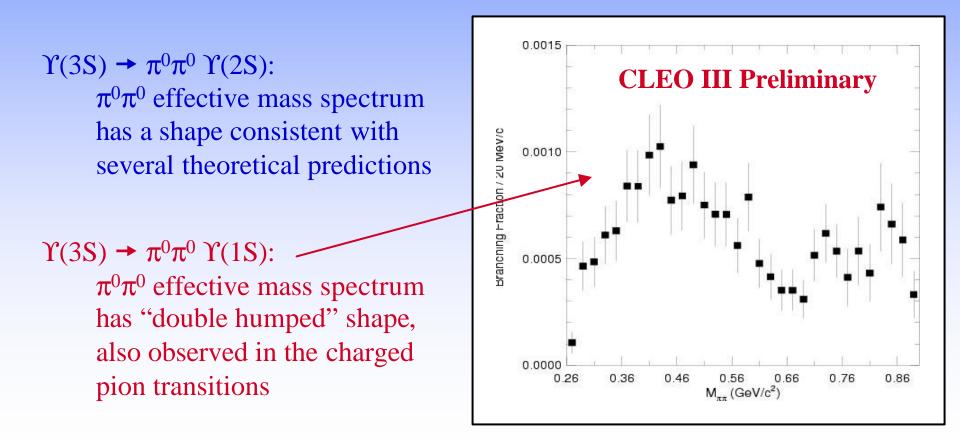

- $\Upsilon(1S) \rightarrow ggg, \ \Upsilon(1S) \rightarrow \gamma^* \rightarrow q\overline{q}$
- continuum production $e^+e^- \rightarrow J/\psi + X$

$$B_{mm}(i(1S) \rightarrow J/y + X) = (6.4 \pm 0.5) \times 10^{-4}$$

$$B_{ee}(i(1S) \rightarrow J/y + X) = (5.7 \pm 0.4) \times 10^{-4}$$

Branching ratio predictions of the color octet model by Braaten and Fleming are in agreement with the above preliminary measurements.

Continuum subtracted J/ ψ momentum spectra -No indication of peaking at large x values, as predicted by color octet model



Di-Pion Transitions from ; (3S)

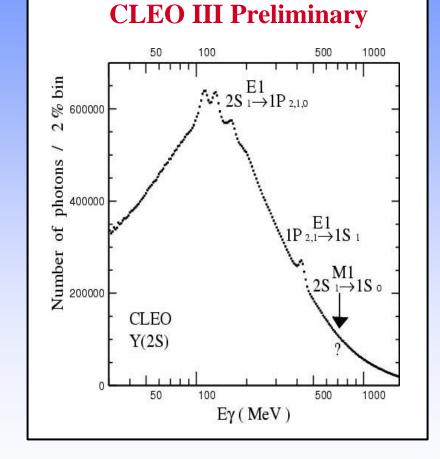
Preliminary ranching ratio measurements for $\Upsilon(2S)$ and $\Upsilon(3S)$:

 $B(((3S) \rightarrow p^0 p^0 ((2S))) = 2.02 \pm 0.18 \pm 0.38 \%)$

 $B((3S) \rightarrow p^{0}p^{0}; (1S)) = 1.88 \pm 0.08 \pm 0.31 \%$

Radiative Transitions from 3 (nS)

M1 Transitions:

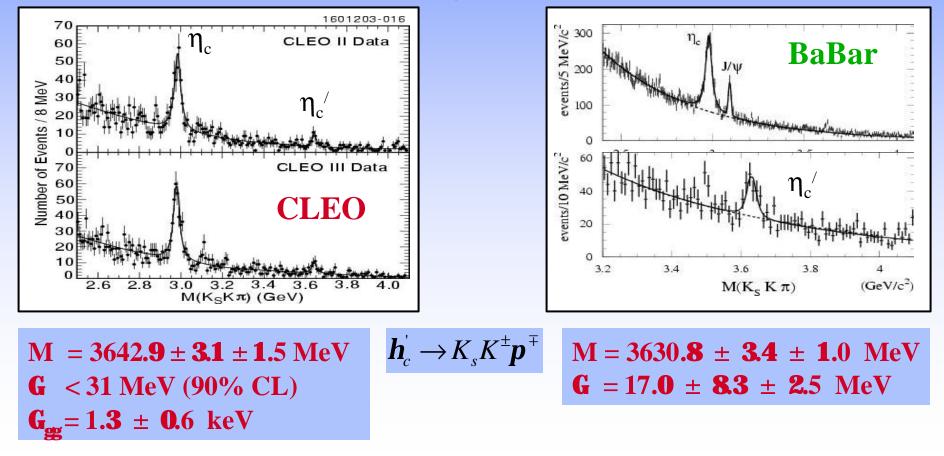

CLEO searched for $\eta_b(1S)$ and $\eta_b(2S)$ states. No significant signals were found. Upper limits for branching ratios as a function of E_{γ} were determined.

E1 Transitions:

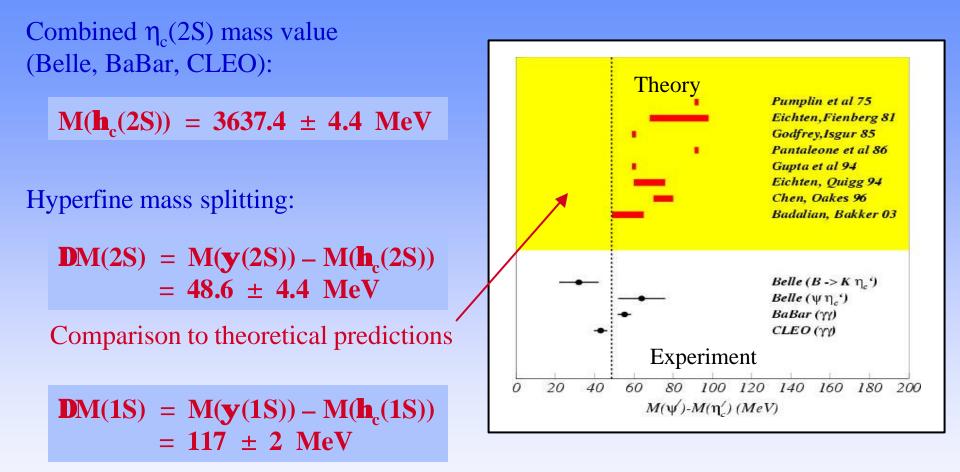
The following transitions were observed:

 $i (3^{3}S_{1}) \rightarrow \mathbf{gc}_{b}(1^{3}P_{J})$ $\mathbf{c}_{b}(2,1^{3}P_{0}) \rightarrow \mathbf{g}_{i}(2,1^{3}S_{1})$

Further precision measurements are in progress.



Latest Experimental Results on h_c(2S)


Belle observed the $\eta_c(2S)$ in two different channels:

 $\begin{array}{ll} B^{\pm} \rightarrow K^{\pm}\left(\mathbf{h}_{c}\right) \rightarrow K^{\pm}\left(K_{s}K^{\pm}\,\mathbf{p}^{\pm}\right) & \mathbf{M}(\mathbf{h}_{c}\right) = 3654 \ \pm \ 6 \ \pm \ 8 \ \mathrm{MeV} \\ e^{+}e^{-} \rightarrow J/\mathbf{y} \ \mathbf{h}_{c}\right) & \mathbf{M}(\mathbf{h}_{c}\right) = 3622 \ \pm \ 12 \ \mathrm{MeV} \end{array}$

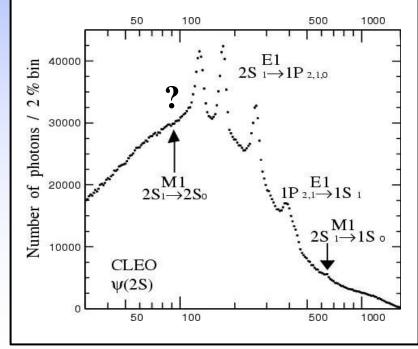
CLEO and BaBar have observed the $\eta_c(2S)$ in two-photon fusion processes:

Latest Experimental Results on h_e(2S)

The measured $\Delta M(2S)$ is much smaller than most theoretical predictions.

This should lead to a new insight into coupled channel effects and spin-spin contribution of the confinement part of qq potential.

Radiative Transitions from y(2S)


B (%)	$\psi(2S) \rightarrow \gamma \chi_c(1P_J)$			$\psi(2S) \rightarrow \gamma \eta_c(1S)$
	J=2 (E1 line)	J=1 (E1 line)	J=0 (E1 line)	J=0 (M1 line)
CLEO	$9.75 \pm 0.14 \pm 1.17$	$9.64 \pm 0.11 \pm 0.69$	$9.83 \pm 0.13 \pm 0.87$	$0.278 \pm 0.033 \pm 0.049$
PDG	7.8 ± 0.8	8.7 ± 0.8	9.3 ± 0.8	0.28 ± 0.06

Good agreement with PDG branching ratios.

Crystal Balls observation of M1 transition to $\eta_c(1S)$ confirmed.

No indication of M1 transition to $\eta_c(2S)$ which was observed by Crystal Ball ~20 years ago.

New Narrow State X(3872)

Belle collaboration observed a narrow state in: $B^{\pm} \rightarrow K^{\pm} X(3872), X (3872) \rightarrow \pi^{+}\pi^{-} J/\psi, J/\psi \rightarrow I^{+}I^{-}$

M = 3872.0 \pm 0.6 \pm 0.5 MeV , G < 2.3 MeV (90% CL)

CDF and D0 collaborations confirmed narrow state in: $p \overline{p} \rightarrow X(3872) + X$, $X(3872) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow \mu^+\mu^ M = 3871.3 \pm 0.7 \pm 0.4$ MeV CDF Collaboration $M = 3871.8 \pm 3.1 \pm 3.0$ MeV D0 Collaboration

Identification of the quantum numbers is important to understand the structure:

- Conventional charmonium state? (Eichten, Lane, Quigg), (Barnes et al) many quantum numbers are possible
- $D^0 \overline{D^{*0}}$ molecule? (Tornqvist et al)

 $J^{PC} = 1^{++}$ (S-wave), 0^{-+} (P-wave)

- Charmonium hybrid state? (Close et al)

X(3872) decays to $\chi_{c1} \gamma$ (if state is ${}^{3}D_{2}$) or $\chi_{c2} \gamma$ (if state is ${}^{3}D_{3}$) or J/ $\psi \gamma$ (if state is χ_{cJ}). D⁰D⁰ (if state is molecular) were searched for. Only upper limits were set.

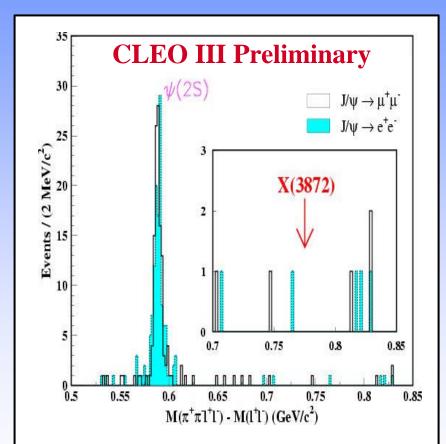
New Narrow State X(3872)

CLEO searched with ~15 fb⁻¹ of CLEO III data for X(3872) state in:

- untagged $\gamma\gamma$ fusion: C+ parity, J^{PC} = 0 ++, 0 -+, 2 ++, 2 -+, ...
- ISR production: $J^{PC} = 1^{--}$

Exclusive channels $X \rightarrow \pi^+\pi^- J/\psi$ with $J/\psi \rightarrow I^+I^-$ were analyzed.

No signal was found, but upper limits were set


Untagged $\gamma\gamma$ fusion:

 $(2J+1)\mathbf{G}_{\mathbf{gg}}\mathsf{B}(\mathbf{X} \rightarrow \mathbf{p}^+\mathbf{p}^- \mathbf{J}/\mathbf{y}) < 16.7 \text{ eV}$ (90% CL)

ISR production:

(systematic errors are included)

Summery

Spectroscopy of heavy quarkonia is a very active field.

Collections of large data samples are now available:

- CLEO III (bb)
- BES II $(c\overline{c})$
- CLEO-c $(c\overline{c})$

Many new important experimental observations and measurements emerged – many more are expected.

Theoretical side (LatticeQCD, NRQCD) is catching up. But many questions still remain open and need to be answered.