Measurement of $\mathcal{B}(D^+ \to \mu^+ \nu_{\mu})$ and the Pseudoscalar Decay Constant f_D at CLEO

hep-ex/0408071

István Dankó

Rensselaer Polytechnic Institute

representing the

CLEO Collaboration

1st Meeting of the APS topical Group on Hadronic Physics Fermilab, Oct 24-26, 2004

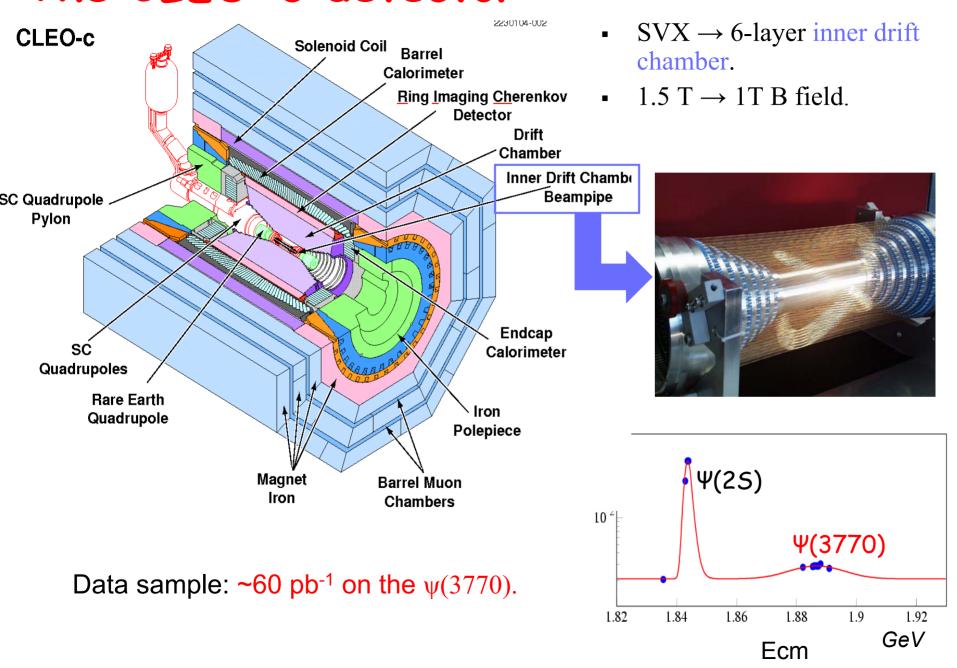
Outline

- Motivation
- > Detector and data sample
- Analysis strategy:
 - tagging technique
 - signal selection
- Background
- > Summary

Motivation

$$D^{\dagger} \left\{ \begin{array}{c} c & W^{\dagger} & \ell^{\dagger} \\ \overline{d} & V \end{array} \right.$$

Helicity suppression: $\tau : \mu : e = 3.2 : 1 : 2.4x10^{-5}$


$$\Gamma(P \to \ell \nu) = \frac{G_F^2}{8\pi} |V_{qq'}|^2 f_P^2 m_\ell^2 M_P^2 \left(1 - \frac{m_\ell^2}{M_P^2}\right)^2$$

Pseudoscalar Decay Constant

- \triangleright Direct Measurement of f_D .
- ➤ Establish the accuracy of potential models and Lattice QCD computations in heavy quark sector.
- \triangleright Charm measurements can be used to determine f_B which is important to determine CKM matrix elements.

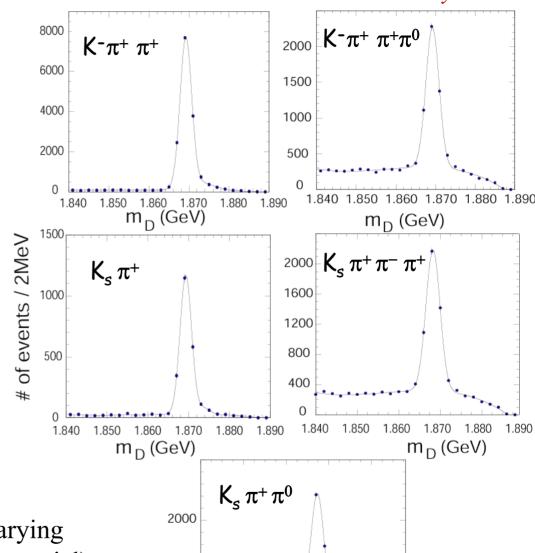
For example: precise CLEO-c f_D measurement + LQCD f_B/f_D could give a ~1% prediction for f_B

The CLEO-c detector

Analysis strategy

Charged D-tag Reconstruction

Preliminary!


> Two key variables:

$$\Delta E = E_{beam} - E_{candidate}$$

$$M_{bc} = \sqrt{E_{beam}^2 - P_{candidate}^2}$$

$$|\Delta E| < 20 \text{ MeV}$$

Extract the number of tags from fit to the M_{bc} distribution:

$$28574 \pm 207 \pm 629$$

±2.2% systematic uncertainty from varying the background shape (Argus vs. polynomial)

1000

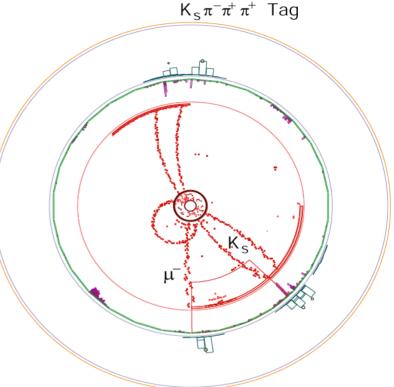
1.840

1.850

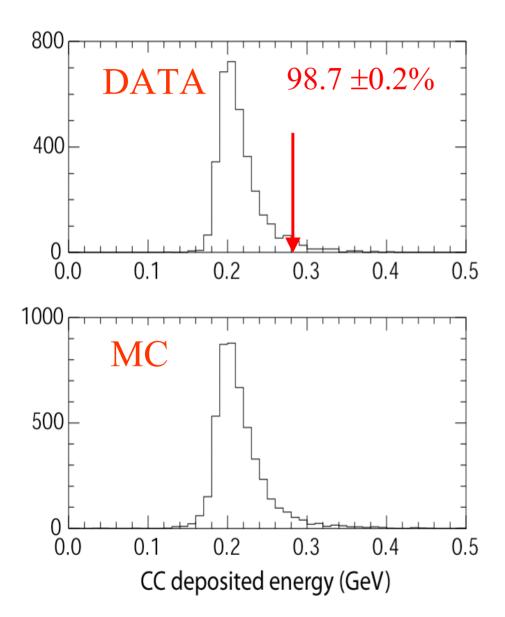
1.860

Signal Extraction

Run: 202742 Event: 98595

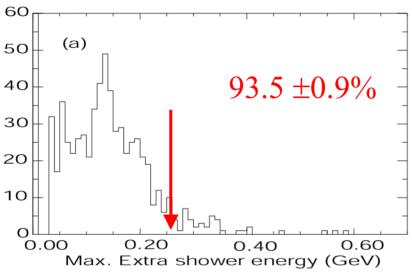

Find events with an additional single track (beside the tagged D⁺):

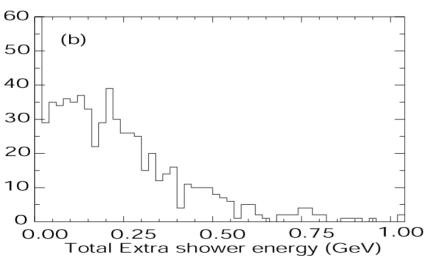
- No extra tracks or reconstructed $K_s (\rightarrow \pi^+\pi^-)$.
- > Largest extra shower < 250 MeV.


Calculate MM² to separate signal from background:

$$MM^2 = (E_{beam} - E_{\mu})^2 - (-\overrightarrow{P_{D^+}} - \overrightarrow{P_{\mu}})^2$$

- \triangleright Signal peaks at MM² = 0 (neutrino mass)
- Account for the background in the signal region of MM² (see later).




Muon candidate selection

- Polar angle: |Cos(θ)| < 0.81 good resolution helps to suppress D[−]→π[−]π⁰ bckg.
- Consistent with minimum ionizing particle:
 deposited energy in CC
 < 300 MeV
 - ✓ Use $e^+e^- \rightarrow \mu^+\mu^-$ sample to study signature of muons.
- Not consistent with K (based on RICH info).

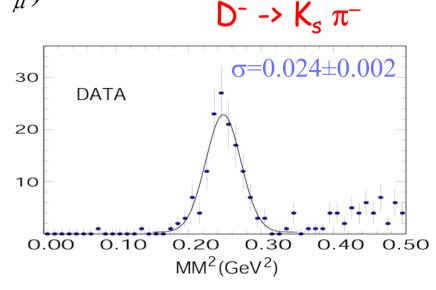
Extra tracks and showers

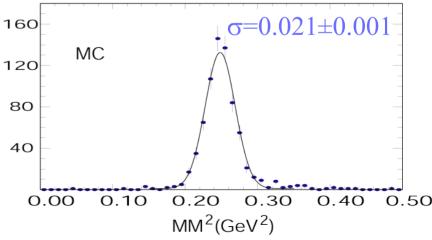
➤ Use double tag D⁰ data sample to study extra particles and showers in the detector.

Mode 1	Mode 2	# of events
$K^-\pi^+$	$K^+\pi^-$	89
$K^+\pi^-\pi^+\pi^-$	$K^-\pi^+$	392
$K^+\pi^-\pi^+\pi^-$	$K^-\pi^+\pi^-\pi^+$	301

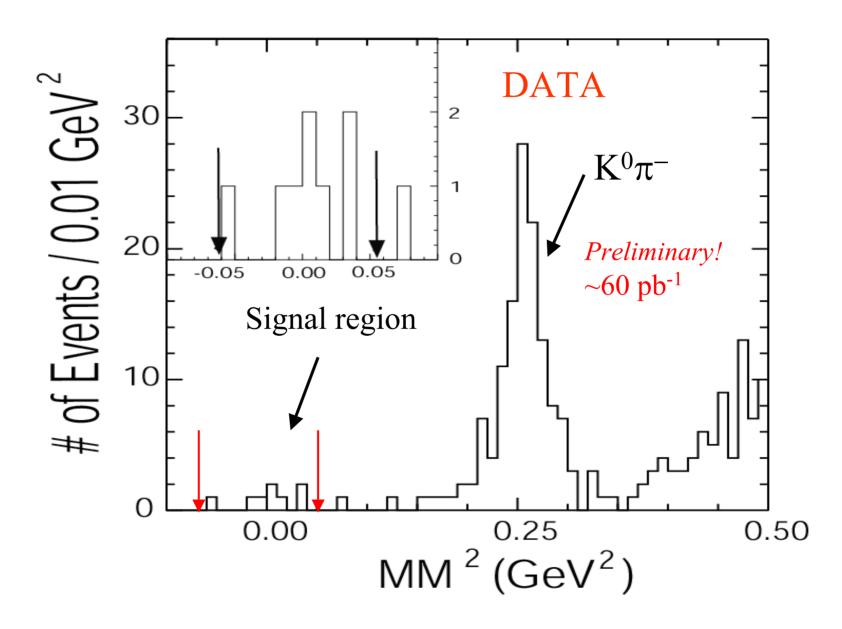
- No extra good tracks coming from the IP.
- Max Extra Shower energy
 < 250 MeV</p>
 - ✓ Helps to reject $D^- \rightarrow \pi^- \pi^0$ background

(Missing Mass)²


$$MM^{2} = (E_{beam} - E_{\mu})^{2} - (-\vec{p}_{D^{+}} - \vec{p}_{\mu})^{2}$$


•Use only direction of the reconstructed D

$$MM^{2} = (E_{beam} - E_{\mu})^{2} - (-p_{0}\hat{p}_{D^{+}} - \vec{p}_{\mu})^{2}$$
$$p_{0}^{2} = E_{beam}^{2} - M_{D^{+}}^{2}$$


- Correct for non-zero crossing angle between e⁺e⁻ beams (boost to CM frame).
- ✓ Use tagged $D^- \rightarrow K_s \pi^-$ sample to check data and MC consistency.

Increase MM² width from MC by 14% to 0.028 GeV².

MM² Distribution

Backgrounds

□ D[±] Background:

- \checkmark D⁺ $\rightarrow \pi^+\pi^0$
- $\checkmark D^+ \rightarrow \overline{K^0} \pi^+$
- \checkmark D⁺ $\rightarrow \tau^+ \nu$, $\tau^+ \rightarrow \pi^+ \nu$
- \checkmark D⁺ $\rightarrow \pi^0 \mu^+ \nu$

□ D⁰D⁰ Background:

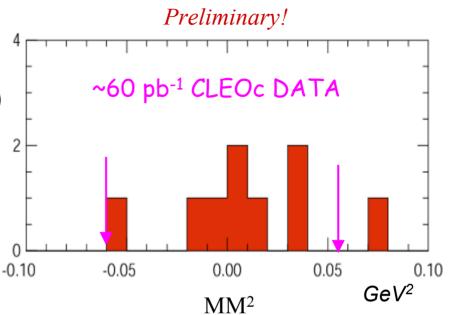
- \checkmark D⁰ $\overline{D^0}$ can look like D+D-:
 - e.g.: $D^0 \rightarrow K^-\pi^+$, $D^0 \rightarrow \pi^+ \mu^- \nu$
- Continuum Background

Estimated backgrounds from MC:

Mode	$\mathcal{B}~(\%)$	# of events
$\pi^+\pi^o$	0.13 ± 0.02	$0.31 {\pm} 0.04$
$K^o\pi^+$	2.77 ± 0.18	$0.06 {\pm} 0.05$
$\tau^+ \nu$	$3.2 \times \mu^+ \nu$	$0.36 {\pm} 0.08$
$\pi^o \mu^+ \nu$	0.31 ± 0.15	negligible
$D^o\overline{D}^o$		0.16 ± 0.16
continuum		0.17 ± 0.17
Total		1.07 ± 0.25

Assign 100% systematic uncertainty to background.

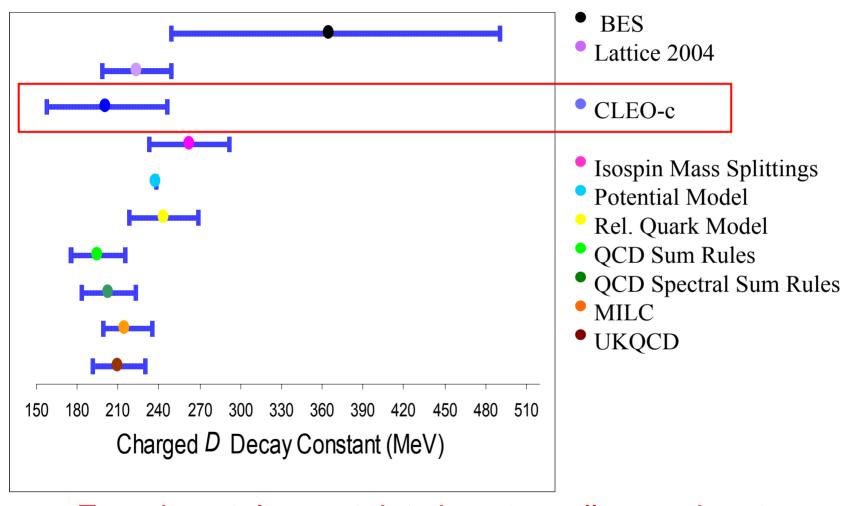
Signal


- \square 8 events within $\pm 2\sigma$ (-0.056<MM²<0.056 GeV²)
- □ 1.07 ±1.07 estimated background events.
- □ Reconstruction efficiency: 69.9 %

$$\mathcal{B}\left(\mathcal{D}^{+} \to \mu^{+} \nu\right) = \frac{\mathcal{N}_{sig}}{\varepsilon^{*} \mathcal{N}_{tag}}$$

$$B = (3.5 \pm 1.4 \pm 0.6)10^{-4}$$

$$f_{D} = (201 \pm 41 \pm 17) \text{MeV}$$


Preliminary!

Fractional systematic errors on B:

- a) μ detection ϵ (5%)
- b) background, taken
- as 100% uncertainty (15.4%)
- c) tagged sample size (2.2%)

Measurements vs. Predictions

Experimental uncertainty is not small enough yet to constrain theory.

Summary

- \Box We report the first statistically compelling evidence for the decay $D^+ \to \mu^+ \nu$.
- □ The measured branching fraction

$$\mathcal{B}(D^- \to \mu \bar{\nu}) = (3.5 \pm 1.4 \pm 0.6) \times 10^{-4}$$

 \Box and D meson decay constant

Preliminary!

$$f_{\rm D} = (201 \pm 41 \pm 17) \text{ MeV}$$

- □ Preliminary results presented at ICHEP 04 (hep/ex-0408071).
- □ To be submitted to PRD.
- □ Continuing work to get more data.