Measurement of the DD Cross Sections and D^0/D^+ Hadronic Branching Fractions

Guang-Pei Chen

(representing the CLEO Collaboration)

Meeting of the Division of Particles and Fields of the American Physical Society Riverside, CA, Aug.26-31, 2004

Introduction

- Sew preliminary results from CLEO-c.
 - $ightarrow Dar{D}$ Cross Sections at $\sqrt{s}=3.77$ GeV.
 - Absolute D Meson Branching Fractions. $\mathcal{B}(D^0 \to K^- \pi^+)$ and $\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$ are two reference branching fractions.
 - \rightarrow Determine other branching fractions.
 - → Reduce systematics when extracting some CKM matrix elements.
- The Based on "double tag" technique pioneered by MARK III. Running at $\sqrt{s}=3.77$ GeV:
 - \blacksquare No additional hadrons accompany the $Dar{D}$ pair: clean.
 - Reconstruction of one D meson serves to tag the event as $D\bar{D}$ (single tag).
 - Reconstruction of the other *D* (double tag) determines the *D* branching fractions independent of luminosity.

- $rac{6}{\sim} 6$ of 12 Wiggler magnets installed last year.
- A pilot run Dec.'03 through Mar.'04.
- $\Rightarrow 57.2 \text{ pb}^{-1}$ data at $\sqrt{s} = 3.770$ GeV. This talk is based on.
- Final 6 magnets installed this summer.
- Resume run this fall.

New inner drift chamber
1 T B-field.

Method of Tagging

Cross section needs the number of $D\bar{D}$ events, BF's don't.

therefore,

$$egin{aligned} \mathcal{B}_{j} &= rac{2\epsilon_{i}}{(2-\delta_{ij})\epsilon_{ij}} \cdot rac{N_{ij}}{N_{i}}, \ N_{Dar{D}} &= rac{(2-\delta_{ij})\epsilon_{ij}}{4\epsilon_{i}\epsilon_{j}} \cdot rac{N_{i}N_{j}}{N_{ij}}. \end{aligned}$$
 $(\epsilon_{ij}pprox\epsilon_{i}\epsilon_{j})$

Strategy

Use the following modes for now:

- ⇒ 3 D^0 modes: $K^-\pi^+$, $K^-\pi^+\pi^0$, $K^-\pi^+\pi^+\pi^-$. ⇒ 2 D^+ modes: $K^-\pi^+\pi^+$, $K^0_S\pi^+$.
- \sim Count D and \overline{D} in a given mode separately,
 - \Rightarrow 10 single tag yields: N_i .
 - $ightarrow 13 = 3^2 + 2^2$ double tag yields: N_{ij} .
- \sim Determine ϵ_i and ϵ_{ij} with signal Monte Carlo.
- \sim A combined χ^2 fit to extract:
 - $woheadrightarrow ar{D}ar{D}$ yields: $N_{D^0ar{D}^0}, \ N_{D^+D^-}.$
 - •• 5 branching fractions: \mathcal{B}_j .
- \sim Many systematic errors cancel in DD yields.

Reconstructing D Mesons

- \sim Two important observables for a $oldsymbol{D}$ candidate:
 - Beam-constrained mass

$$M_{BC} = \sqrt{E_{ ext{beam}}^2 - ec{p}_D^2}.$$

Energy difference

$$\Delta E = E_D - E_{beam}$$
.

- Event selection
 - **Track:** track quality, particle identification.
 - $\Rightarrow \pi^0$: π^0 mass cut, a kinematic fit is applied.
 - $\twoheadrightarrow K_S^0$: a constrained vertex fit to apply K_S^0 mass cut.
 - $\rightarrow D: \Delta E$ cut. Smallest $|\Delta E|$ candidate is chosen/mode/event.

Single Tag Yields

- \sim Binned likelihood fits to extract N_i :
 - An inverted Crystal Ball function accounting for core Gaussian with ISR tail.
 - A bifurcated Gaussian modeling signal and tails.
 - An ARGUS function representing backgrounds.

Single Tag Yields–Continued

Single Tag Yields

D or $ar{D}$ Mode	Yield (10^3)	Efficiency (%)
$D^0 o K^- \pi^+$	5.14 ± 0.07	65.1 ± 0.6
$ar{D}^0 o K^+ \pi^-$	5.16 ± 0.08	66.3 ± 0.6
$D^0 o K^- \pi^+ \pi^0$	$\boldsymbol{9.62\pm0.12}$	$\textbf{33.6} \pm \textbf{0.4}$
$ar{D}^0 o K^+ \pi^- \pi^0$	$\boldsymbol{9.58 \pm 0.12}$	$\textbf{34.0} \pm \textbf{0.4}$
$D^0 ightarrow K^- \pi^+ \pi^+ \pi^-$	7.39 ± 0.10	$\textbf{45.1} \pm \textbf{0.5}$
$\bar{D}^0 \rightarrow K^+ \pi^- \pi^- \pi^+$	$\textbf{7.39} \pm \textbf{0.10}$	$\textbf{45.5} \pm \textbf{0.5}$
$D^+ ightarrow K^- \pi^+ \pi^+$	7.58 ± 0.09	52.2 ± 0.5
$D^- o K^+ \pi^- \pi^-$	7.57 ± 0.09	$\boldsymbol{51.9 \pm 0.5}$
$D^+ o K^0_S \pi^+$	1.09 ± 0.04	45.6 ± 0.5
$D^- o K^0_S \pi^-$	$\boldsymbol{1.12\pm0.04}$	$\textbf{45.9} \pm \textbf{0.5}$

Double Tag Yields

$\sim D ar{D}$ selection

Double Tag Yields–Continued

- \ll Binned 2-D likelihood fit to extract N_{ij}
 - A Crystal Ball function of \hat{M}_{BC} and a Gaussian function of $\delta M_{BC} \equiv \frac{M_{BC}^D M_{BC}^D}{2}$.
 - A product of two bifurcated Gaussian functions for M^D_{BC} and $M^{ar{D}}_{BC}$ accounting for signal and tails.
 - A product of an ARGUS function of \hat{M}_{BC} and a Gaussian function of δM_{BC} for mispartitioning and continuum backgrounds.
 - A product of an ARGUS function of M^D_{BC} and a Gaussian function of $M^{ar{D}}_{BC}$ for the horizontal band; a similar product for the vertical band.

Double Tag Yields–Continued

Double tag yields

D Mode	$ar{D}$ Mode	Yield	Efficiency (%)
$D^0 o K^- \pi^+$	$ar{D}^0 o K^+ \pi^-$	109 ± 11	42.6 ± 0.5
$D^0 o K^- \pi^+ \pi^0$	$ar{D}^0 o K^+ \pi^- \pi^0$	484 ± 23	12.1 ± 0.3
$D^0 ightarrow K^- \pi^+ \pi^+ \pi^-$	$ar{D}^0 o K^+ \pi^- \pi^- \pi^+$	280 ± 17	$\boldsymbol{20.8 \pm 0.4}$
$D^0 o K^- \pi^+$	$ar{D}^0 o K^+ \pi^- \pi^0$	245 ± 16	$\textbf{23.2}\pm\textbf{0.4}$
$D^0 o K^- \pi^+ \pi^0$	$ar{D}^0 o K^+ \pi^-$	262 ± 16	$\boldsymbol{22.6 \pm 0.4}$
$D^0 o K^- \pi^+$	$ar{D}^0 o K^+ \pi^- \pi^- \pi^+$	205 ± 14	29.6 ± 0.4
$D^0 ightarrow K^- \pi^+ \pi^+ \pi^-$	$ar{D}^0 o K^+ \pi^-$	197 ± 14	29.6 ± 0.4
$D^0 ightarrow K^- \pi^+ \pi^0$	$ar{D}^0 o K^+ \pi^- \pi^- \pi^+$	359 ± 20	15.2 ± 0.3
$D^0 ightarrow K^- \pi^+ \pi^+ \pi^-$	$ar{D}^0 o K^+ \pi^- \pi^0$	340 ± 19	15.5 ± 0.3
$D^+ ightarrow K^- \pi^+ \pi^+$	$D^- ightarrow K^+ \pi^- \pi^-$	379 ± 20	26.7 ± 0.4
$D^+ o K^0_S \pi^+$	$D^- ightarrow K^0_S \pi^-$	9 ± 3	$\boldsymbol{20.6 \pm 0.4}$
$D^+ ightarrow K^- \pi^+ \pi^+$	$D^- o K^0_S \pi^-$	61 ± 8	23.7 ± 0.4
$D^+ o K^0_S \pi^+$	$D^- ightarrow K^+ \pi^- \pi^-$	53 ± 7	23.9 ± 0.4

Systematics

Source	Uncertainty (%)	Quantity
Data processing	0.3	All yields
Yield fit functions	0.1–2.9	All yields
Background bias	2.5	Double tag yields
Double DCSD interference	0.8	Neutral double tag yields
Detector simulation	3.0	Tracking effi ciencies
	3.0	$K^0_{oldsymbol{S}}$ effi ciencies
	4.4	$\pi^{\widetilde{0}}$ effi ciencies
	0.3	π^\pm PID effi ciencies
	1.0	K^\pm PID effi ciencies
Trigger simulation	0.3	Trigger effi ciencies
Final state radiation	0.5	$oldsymbol{D}$ effi ciencies
$ \Delta E $ requirement	1.0	$oldsymbol{D}$ effi ciencies, correlated by decay
Resonant substructure	3.0	$D^0 o K^- \pi^+ \pi^+ \pi^-$ effi ciencies

Tracking efficiencies dominate

Conservative 3%/track tracking efficiency: working to reduce it.

Most systematics will be improved with more data.

Combined χ^2 Fitter

- ${}$ Fits simultaneously $N_{D^0ar{D}^0}$, $N_{D^+D^-}$, and all ${\cal B}_j$'s.
- Takes into account:
 - \blacksquare Correlation of N_{ij} and N_i .
 - \blacksquare Correlation of different tagging modes when measuring \mathcal{B}_j .
 - All correlations introduced by systematics.
- Tested with generic Monte Carlo sample:

	$N_{D^0ar{D}^0}$	$K^{-}\pi^{+}$	$K^-\pi^+\pi^0$	$K^-\pi^+\pi^+\pi^-$	$N_{D^+D^-}$	$K^-\pi^+\pi^+$	$K^0_S \pi^+$
In	2.04 M	$\mathbf{3.83\%}$	$\boldsymbol{13.90\%}$	7.90%	1.52 M	9.00%	1.45%
Out	2.08 M	3.77%	13.73%	7.86%	1.55 M	9.02%	1.47%
σ	0.02 M	0.04%	0.13%	0.08%	0.03 M	0.17%	0.03%
$\frac{\Delta}{\sigma}$	+1.6	-1.4	-1.3	-0.5	+1.1	+0.1	+0.6

Results–Cross Sections

Parameter	Fitted Value
$N_{D^0ar{D}^0}$	$(1.98\pm 0.04\pm 0.03) imes 10^5$
$N_{D^+D^-}$	$(1.48\pm0.06\pm0.04) imes10^{5}$

 \sim Using $\mathcal{L}=57.2\pm1.7$ pb $^{-1}$, we get:

Results from other experiments (BES uses PDG BF's):

Exp.	$\sigma(D^0ar{D}^0)$	$\sigma(D^+D^-)$	Reference
MARK III	$(5.8\pm 0.5\pm 0.6)/2$	$(4.2\pm 0.6\pm 0.3)/2$	PRL 60 , 89(1988)
BES	$3.26 \pm 0.09 \pm 0.25$	$2.52 \pm 0.07 \pm 0.24$	hep-ex/0406027

Results–Branching Fractions

Parameter	Fitted Value	PDG 2004
${\cal B}(D^0 o K^- \pi^+)$	$0.0392 \pm 0.0008 \pm 0.0023$	$\boldsymbol{0.0380 \pm 0.0009}$
${\cal B}(D^0 o K^- \pi^+ \pi^0)$	$0.143 \pm 0.003 \pm 0.010$	0.1300 ± 0.0080
${\cal B}(D^0 o K^- \pi^+ \pi^+ \pi^-)$	$0.081 \pm 0.002 \pm 0.009$	0.0746 ± 0.0031
${\cal B}(D^+ o K^- \pi^+ \pi^+)$	$0.098 \pm 0.004 \pm 0.008$	$\boldsymbol{0.092 \pm 0.006}$
${\cal B}(D^+ o K^0_S \pi^+)$	$0.0161 \pm 0.0008 \pm 0.0015$	0.0282 ± 0.0019
$rac{\mathcal{B}(D^0 o K^- \pi^+ \pi^0)}{\mathcal{B}(D^0 o K^- \pi^+)}$	$3.64 \pm 0.05 \pm 0.17$	$\textbf{3.42} \pm \textbf{0.22}$
$rac{\mathcal{B}(D^0 o K^- \pi^+ \pi^+ \pi^-)}{\mathcal{B}(D^0 o K^- \pi^+)}$	$2.05 \pm 0.03 \pm 0.14$	$\boldsymbol{1.96\pm0.06}$
$rac{\mathcal{B}(D^+ o K_S^0 \pi^+)}{\mathcal{B}(D^+ o K^- \pi^+ \pi^+)}$	$0.164 \pm 0.004 \pm 0.006$	$\boldsymbol{0.153 \pm 0.003}$

FSR included in MC efficiencies, PDG values don't include this effect.

Conclusions

 \sim CESR-c pilot run accumulated 57.2 pb $^{-1}$ data at $\sqrt{s}=3.77$ GeV.

Using these data, we obtained preliminary results:

 $ightarrow Dar{D}$ cross sections at $\sqrt{s}=3.77$ GeV:

$$egin{aligned} &\sigma(e^+e^- o D^0ar{D}^0) &= & (3.47\pm 0.07\pm 0.15) \,\, {
m nb}, \ &\sigma(e^+e^- o D^+D^-) &= & (2.59\pm 0.11\pm 0.11) \,\, {
m nb}, \ &\sigma(e^+e^- o Dar{D}) &= & (6.06\pm 0.13\pm 0.22) \,\, {
m nb}. \end{aligned}$$

- → 5 branching fractions:
 - $egin{array}{rll} \mathcal{B}(D^0 o K^- \pi^+) &=& 0.0392 \pm 0.0008 \pm 0.0023, \ \mathcal{B}(D^0 o K^- \pi^+ \pi^0) &=& 0.143 \pm 0.003 \pm 0.010, \ \mathcal{B}(D^0 o K^- \pi^+ \pi^+ \pi^-) &=& 0.081 \pm 0.002 \pm 0.009, \ \mathcal{B}(D^+ o K^- \pi^+ \pi^+) &=& 0.098 \pm 0.004 \pm 0.008, \ \mathcal{B}(D^+ o K_S^0 \pi^+) &=& 0.0161 \pm 0.0008 \pm 0.0015. \end{array}$
- More info available from ICHEP '04 conference paper.
- Full equipped CESR-c ready for run, more results from CLEO-c soon.