

CLEO-c & CESR-c: A New Frontier in Weak & Strong Interactions

CLEO-c Collaboration:

Carleton, Carnegie Mellon, Chicago, Cornell, Florida, George Mason, Illinois, Kansas, Luther, Northwestern, Minnesota, Oklahoma, Pittsburgh, Puerto Rico, Purdue, Rochester, RPI, SMU, SUNY Albany, Syracuse, Vanderbilt, Wayne State.

CLEO-c: The Context

Flavor Physics is now in "the sin2 β era", akin to Weak Physics & "the precision Z era" in the '90s. B-factories will overconstrain Decade CKM matrix with precision measurements. The discovery potential is limited by systematic errors from non-perturbative QCD.

LHC may uncover strongly coupled sectors in the physics that lies beyond the Standard Model. The LC will study them. Strongly-coupled field theories are an outstanding challenge to theoretical physics. Critical need for reliable theoretical techniques & detailed data to calibrate them.

Charm at threshold can provide the data to test & calibrate QCD techniques such as the Lattice. Hence CLEO-c/CESR-c.

Precision theory + charm = dramatic increase in the potential of quark flavor physics to discover new physics

Theoretical errors dominate width of bands

precision QCD calculations tested with precision charm data from CLEO-c →theory errors of a few % on B system decay constants & semileptonic form factors

500 fb⁻¹ @ BABAR/Belle

+

CLEO-c Physics Program

Flavor Physics: overcome the hadronic road block

Precision charm absolute branching ratio msmts needed for precision B msmts... can be <u>the</u> limiting systematic error

Tests QCD techniques in c-sector...

- \succ decay constants, form factors, V_{cs}, V_{cd}, unitarity
- And apply to b-sector
 - \succ Precision V_{ub}, V_{cb}, V_{td}, & V_{ts}
 - > Maximizes sensitivity to new physics
- Lattice testing ground
 - > Precise measurements of quarkonia spectroscopy & decay
- Physics beyond the Standard Model
 - > D-mixing, CPV, rare decays, + measure strong phases

The CLEO-c program will enable this decade's flavor physics
& the next decade's new physics

Detector: CLEO III \rightarrow CLEO-c

Minor modifications: ≻ Silicon → 6-layer low mass inner drift chamber ≻ B-field: 1.5T→1.0T

Status

CESR upgraded to CESR-c > 12 wigglers for damping 6 installed in summer '03, 6 installed summer '04 > Luminosity tuning monitor (high rate) installed ~50% time commitment to CHESS (Cornell High Energy Synchrotron Source) @ ~5 GeV No more simultaneous CLEO/CHESS running Sept '03-Mar '04 6-wiggler Pilot Run $> L_{PFAK} = 4.6 \times 10^{31}$ > 57 pb⁻¹ @ ψ(3770) (6×Mark III, 3×BES II) $> 5.5 \text{ pb}^{-1} @ \psi(2S) (3686)$ > 20 pb⁻¹ @ 3670 (continuum just below $\psi(2S)$) Preliminary results at ICHEP on many high priority topics (as well as "niche" physics like quarkonia decays)

Luminosity: Going up...

CESR

CLEO

D-hadronic BRs

σ(DD)=(6.06±0.13 ±0.23) nb

 f_{D+} from Absolute Br(D⁺ $\rightarrow \mu^+ \nu$)

Hadronic $\rightarrow D^- D^+ \rightarrow \mu^+ \nu$ 1 track, μ consistent, no showers tag

$$MM^{2} = (E_{beam} - E_{\mu})^{2} - (-\overrightarrow{P_{Dtag^{+}}} - \overrightarrow{P_{\mu}})^{2}$$

CESR

CLEO

f_{D+} from Absolute Br(D⁺ $\rightarrow \mu^+ \nu$) hep-ex/0408071 (Preliminary)

Tags 28575 Signal 8 events Bkgd 1.07±1.07 $B = (3.5 \pm 1.4 \pm 0.6) \times 10^{-4}$ **CLEO** data $f_{D+} = (201 \pm 41 \pm 17) MeV$ $D^+ \rightarrow \overline{K^0} \pi^+$ •BES # of Events / 0.01 GeV² • Lattice 2004 30 2 • CLEO-c • Isospin Mass Splittings ~57 pb-1 Potential Model 20 • Rel. Quark Model -0.05 0.00 0.05 OCD Sum Rules 8 signal • QCD Spectral Sum Rules • MILC 10 candidates • UKOCD ഹി 330 360 390 420 450 480 150 180 210 240 270 300 510 0 0.25 0.00 0.50 Charged D Decay Constant (MeV) $MM^2(GeV^2)$

CESR

CLEO

Run Plan

• CESR-c

- > Components in place, including fast luminosity tuning monitor
- > Improvements seen already. Factor of ~5 to design performance.
- Big Picture: Now 2007
 - > "Yellow Book" priorities have not changed
 - > Year 1: D physics : 3 fb⁻¹ @ ψ(3770)
 - > Year 2: D_s physics: 3 fb⁻¹ @ ~4140: D_sD_s threshold
 - > Year 3: QCD w/10⁹ J/ ψ (20×BES)
- Other c.m. energies potentially of interest...
 - > Will be taken so as to not compromise above goals
 - ≻ ψ**(2S)**
 - **D** Physics: h_c studies, 12% rule, η_c BRs, J/ ψ BRs, ...
 - Even in small doses, useful for calibration, systematic checks
 - Continuum @ 3670
 - > R scan
 - > 3770 scan
 - ≻ ??
- Exciting years ahead!