CLEO Results on Hadronic Decays of Quarkonia

Brian Heltsley Cornell University

Quarkonia Hadronic Decays

•Motivation CLEO datasets •Technique • $\psi(2S) \rightarrow Vector Pseudoscalar (VP)$ >Comparisons w/subsequent BES results • $\psi(2S) \rightarrow multibody$ • $\Upsilon(nS) \rightarrow 2$ -body (LEPPHO 2003)

$\psi' \rightarrow 2$ hadrons

"The 14% rule"
12?

$$c\bar{c}$$
 annihilation \Rightarrow decay rate $\sim |\Psi(0)|^2$
 $Q_h = \frac{B(\psi(2S) \rightarrow H)}{B(J/\psi \rightarrow H)} = \frac{B(\psi(2S) \rightarrow e^+e^-)}{B(J/\psi \rightarrow e^+e^-)} \approx (12.3 \pm 0.9)\%$

Complications (& there are more):

- •Powers of αS at mJ/ ψ , m ψ (2S) 0.845 hep-ph/09910406
- •Form factor ECM dependence? (3.686/3.097)2=1.4
- Non-relativistic corrections
- Interference with continuum
- •Only for $cc \rightarrow \gamma^*$, not $cc \rightarrow ggg$? (Gerard/Weyers)

QWG3 B Heltsley Oct 2004

Exclusive hadronic $\psi(2S)$ decays

Datasets

- \u03cb(25) (3.686GeV): \succ Ldt = 5.46pb⁻¹, 3.08M $\psi' \Rightarrow 10^{-5}$ BR within reach Continuum (3.67GeV): \succ [Ldt = 20.46 pb⁻¹ \Rightarrow ~ pb cross sections > This quantity essential, as continuum bgds are typically ~1/3 of signals > CLEO doubled its continuum sample after glimpsing the apparent size of cross sections > Difficult to establish $\psi(2S)$ signal as being very different from continuum without large ratio of
 - continuum: $\psi(2S)$ luminosity (we have ~4:1)
 - \succ Consider $\rho\pi$
 - 32 in the ψ(25) sample, 41 in the continuum sample
 So 32 on a bgd of ~11±2: "only" 3.7σ_____

Analysis Overview

Signal event selection: > Energy/momentum conservation $0.98 < E_{VIS}/E_{CM} < 1.015$, $|| p_1 |-| p_2 ||/E_{BEAM} < 0.04$ > Mass windows (determined using MC) \succ K_s $\rightarrow \pi^{+}\pi^{-}$, π^{0} , & $\eta \rightarrow \gamma\gamma$ with kinematic fitting > Standard particle ID (RICH, dE/dx), very low fake rates • Background: Suppress $\psi(2S) \rightarrow \pi^0 J/\psi$, $\pi^+\pi^- J/\psi$, $\pi^0\pi^0 J/\psi$ with mass & missing mass cuts > Subtract small remaining levels using appropriate sidebands • Efficiencies: 4-31%

Signal Handling

• Yields: a handful to few 100

Significance of signals

- > Establish $\psi(2S)$ yields as different from continuum, regardless of BR extraction technique
- Feldman-Cousins style Poisson fluctuation of bgd mean & bgd around that mean, along with signal to compute probability that observed yield is due to continuum alone

Branching fraction: interference w/cont?

- > We quote straight subtraction of continuum. Why?
- > Strong phases are model dependent
 - We provide enough information for model builders/testers
- > This convention can be followed by any expmt:
 - Common ground for comparison can be found
- If decay is e-m (virtual γ), our procedure is ~the "right" thing
 Because beam energy spread (1.5-2.3 MeV) >> Γ (~270 keV), the data integrates over constructive & destructive interference
 Isospin-violating decays (ωπ, ρη)
 - Some models: e.g. intrinsic flavor

Masses: $\psi(2S) \rightarrow VP \& b_1\pi$

- **ψ(25) data**
- Scaled Continuum
- -- signal MC, arb. Scale

Arrows show cut values

Evis: $\psi(2S) \rightarrow VP \& b_1\pi$

ψ(2S) data
Continuum, to scale
signal MC, arb. scale

ψ**(2S)**→π⁺π⁻π⁰ (ρπ)

Normalization

ψ'→π⁺π⁻ J/ψ, J/ψ→μ⁺μ⁻
 > Copious production
 > Clean (almost no background)
 > Simple exclusive final state like others
 > High trigger efficiency
 > Some systematic errors cancel
 > Modeled well

The Measurements

 $\psi(2S)$ ($\sqrt{s=3.686GeV}$) cont \rightarrow 2S $N^{obs,\psi(2S)} - N^{cont} \times$ - Nxfeed, $\psi(2S)$ scale factor $B(\psi(2S) \rightarrow X)$ ±stat ±syst $B(\psi(2S) \rightarrow \pi^+\pi^-J/\psi,$ $\varepsilon(X) N(\pi^+\pi^-\mu^+\mu^-) / \varepsilon(\pi^+\pi^-\mu^+\mu^-)$ $J/\psi \rightarrow \mu^+\mu^-$) No treatment of interference. Continuum ($\sqrt{s=3.670GeV}$) Ncont – Nxfeed,cont ±stat ±syst $\sigma(e^+e^- \rightarrow X) =$ $\varepsilon^{\text{cont}} \times \int \mathcal{L}^{3670}$

Continuum scale factor

Luminosity ratio: 5.46/20.46=0.267 (use $\gamma\gamma$ events: unlike e⁺e⁻, no interference w/direct ψ (2S) decays) × 1/sⁿ dependence: \rightarrow 0.99-0.97 × Efficiency: ε (cont)/ ε (ψ (2S))=0.99-1.07

Results

Channel	ε (%)	# Cont	# ψ(2S)	Sig . (#σ)	BR (10-6)	Q/Q (%)	Cont σ (pb)
π⁺π⁻π ⁰	30.6	85	217	~6	136 ⁺¹² ₋₁₃ ±21	6.6±1.2	13.1 ^{+2.0} _{-1.8} ±3.0
ρπ	28.2	47	35	3.7	24 ⁺⁷ ₋₈ ±2	1.2±0.5	8.3 ^{+1.7} _{-1.4} ±1.2
ρ ^ο π ^ο	30.8	21	15	3.0	9 ±4 ±1	1.7±0.9	3.2 ^{+1.1} _{-0.9} ±0.5
ρ⁺π⁻	26.9	26	20	2.5	15 ⁺⁶ ₋₇ ±2	1.0±0.6	5.2 ^{+1.4} ±0.5
ωπ ⁰	18.3	55	31	3.1	23 ⁺⁹ ±2	44 ±22	14.2 ^{+2.7} _{-2.4} ±2.0
φπ ⁰	15.0	3	1	<1	<7		0.8 ^{+1.3} _{-0.6} ±1.1
ρ ^ο η	19.5	38	28	4.2	31 ⁺¹¹ ₋₇ ±2	109±41	10.2 ^{+2.2} _{-1.9} ±1.6
ωη	9.4	3	1	<1	<10	<5.5	1.8 ^{+1.7} _{-0.9} ±0.2
φη	8.8	3	9	2.1	19 ⁺¹⁰ ₋₁₅ ± 4	22±18	2.0 ^{+2.0} _{-1.1} ±0.2
K*ºKº	8.1	36	35	5.2	87 ⁺²¹ ₋₂₅ ±9	16±5	24.6 ^{+5.1} _{-4.4} ±3.0
K*⁺K-	15.5	4	10	2.0	17 ⁺⁸ ±4	1.6±1.5	0.8 ^{+1.4} ±0.8
b ₁ ⁰ π ⁰	5.9	5	54	~6	205 ⁺³⁸ ₋₄₅ ±30	70±26	1.9 +3.9 ±1.4
b ₁ ⁺ π ⁻	12.2	17	226	~6	369 ⁺⁴⁰ ₋₄₁ ±76	97±28	6.4 ^{+2.5} _{-2.0} ±1.0

Systematic Errors

- <u>Statistical errors dominate here:</u> sys>stat only for $\pi^+\pi^-\pi^0$, $b_1\pi$, $\omega\pi^+\pi^-$
- Common to all:
 - >#ψ'→π⁺ π⁻ J/ψ (1.7%), trigger (1%), e[±] veto (1%), MC stats (<2%): 3%</p>
 - > for cross sections: +luminosity (5%): 6%
- Mode by mode
 - > 2%/(π^0/η), 5%/K_S, 3%/PID, 2.5-4% tracking due to partial cancellation w/ $\psi' \rightarrow \pi^+ \pi^- J/\psi$
 - >±50% of the cross-feed contribution: large errors for K^{*+}K⁻, φη, φf₂', K^{*}K^{*}

$Q = \psi(2S)/J/\psi$

• ρπ, K*K measured • IV modes ~obey 12% rule **ο b**₁π **too** Large K*K charge/neutral difference > Unlike $J/\psi!$ Why? Biggest violators $> \pi^{+}\pi^{-}\pi^{0}$, ρπ, K^{*+}K⁻, ωη

Comparing $\psi(2S) \rightarrow \rho \pi$

	CLEO	BES	
Efficiency	28.2%	10.5%	2.7:1
#ψ (2S)	3.1M	14.0M	1:4.5
#ρπ @3.686GeV	31.8±6.2	~73±9	
	CLEO extrap:	53.5±10.4	1.4 σ
Continuum	20.5 pb ⁻¹	6.4 pb ⁻¹	3.2:1
_ψ(25)/ _ cont	0.26	3.1	1:12
#ρπ cont @3.67[3.65]GeV	41 ± 7	~8 ± 3	
	CLEO extrap:	4.8 ±0.8	1.0 σ
Signal/Bgd	31.8 / 10.7(=41*.26)	~73 /~24.8(=8*3.1)	
BR (10 ⁻⁶)	20±7±2	51±7±8	
significance	3.7	7.8	

More on CLEO/BES comparisons...

BES & CLEO VP event yields on continuum & $\psi(2S)$ are statistically compatible in all modes (accounting for ε 's, lumi) Different BRs, significances >Different handling of continuum subtractions >Assumptions about interference phases \succ For $\rho\pi$, assumptions about the nature of the

For ρπ, assumptions about the nature of the high ππ mass events (interference in ρ region)

Continuum cross sections

1:2/3:4/9:1/3:4/27:1/9:2/27:

Rosner hep-ph/0405196 (subm to PRD); Haber/Perrier PRD 32 (1985) 2961.

60

50

K*⁰K⁰ on continuum

Very clean signal

$\psi(2S) \rightarrow multibody$

·2(π⁺π⁻), 2(π⁺π⁻)π⁰, K⁺K⁻, π⁺π⁻, 2(K⁺K⁻)

ppπ⁺π⁻, **ppK⁺K⁻**, ΛΛ,
 ΛΛπ⁺π⁻, Λ**pK⁺**, Λ**pK⁺π⁺π⁻**

·ωπ⁺π⁻, ωK⁺K⁻, ωpp,
η3π, η'3π, φπ⁺π⁻,
φK⁺K⁻, φpp

ψ(2S) data
Continuum, to scale
signal MC, arb. scale

Evis: Multibody

QWG3 B Heltsley Oct 2004

Multibody BR's

Q: $\psi(2S)/(J/\psi)$ for multibody

Broad agreement w/12% rule observed...

 $\Upsilon \rightarrow 2-Body$

Reso- nance	Lumi (pb ⁻¹)	#decays
Ƴ (35)	1460	6.0
Ƴ (25)	1380	9.0
Ƴ (15)	1210	29.0

for 2-body hadronic decays
• Similar strategy as $\psi(2S)$ analysis
Released LEPPHO 2003
Sample several types of modes
≻ VP: ρπ, K*K
AP: b ₁ π, K ₁ (1270)K, K ₁ (1400)K
VT: ωf ₂ , φf ₂ , φf ₂ ', K*K ₂ *
Use Y(4S) & nearby continuum as a
source of bgd, scaling by lumi & 1/s ^r
• "12% rule" becomes
> "48% rule" for Y(2S)/Y(1S)
"72% rule" for Y(3S)/Y(1S)
• Efficiencies 5-11%
Sensitivity in BR: ~10 ⁻⁵
Theoretical expectations not clear

• Use CLEO's large Y sample to search

Y(1S): Evis & Sub-Masses

 $\Upsilon \rightarrow 2$ -Body Results

Channel	Ƴ (15)		Ƴ (25)	Υ (25)		Ƴ (35)	
	BR (10 ⁻⁶)	Sig.	BR (10 ⁻⁶)	Sig.	BR (10-6) Sig .		
ρπ	<4	-	<11	-	<22	-	
K*K	6 ⁺³ -2 ±1	3.6	<8	-	<14	-	
ρ α₂	9±4±1	3.0	<24	-	<30	-	
ω f ₂	<7	-	<11	-	<8	-	
φ f 2	7 ⁺³ -2 ±1	5.5	• 6 ⁺⁶ -3±1	3.0	<14	-	
K*K ₂ *	9 ⁺⁵ -4±1	3.0	<32	-	<28	-	
b ₁ π	<8	-	<12	-	<18	-	
K ₁ (1270)K	<8	-	<11	-	<17	-	
K ₁ (1400)K :	14 ⁺³ -2 ^{±2}	5.6	×33	-	<22	-	

Summary

• $\psi(2S)$ branching fractions measurement: $> 10^{-3} - 10^{-5}$, mostly statistics dominated \succ First evidence for $\psi(2S) \rightarrow \rho \pi$, $\omega \pi$, $\rho \eta$, K*⁰K⁰ $> \pi^+\pi^-\pi^0$ Dalitz plot distinctly different than continuum or J/ψ > K*K charged vs neutral asymmetry > IV channels $\rho\eta$, $\omega\pi$ don't break 12% rule > Multibody channel msmts roughly obey 12% rule • $e^+e^- \rightarrow X @\sqrt{s} = 3670 GeV$ cross sections First measurements, picobarn range Broad agreement with guark counting except K*⁰K⁰ • Y→2-Body signals in Y(1S)→
• f₂'(1525), K₁(1400)K at BR~10⁻⁵ > Other BR upper limits of ~10⁻⁵

QWG3 B Heltsley Oct 2004