# CLEO Results on Quarkonium Transitions

Brian Heltsley Cornell University



#### Quarkonia Transitions

• $\psi(2S) \rightarrow J/\psi$  + hadrons (NEW!) >X J/ψ,  $\pi^{+}\pi^{-}$  J/ψ,  $\pi^{0}\pi^{0}$  J/ψ, η J/ψ,  $\pi^{0}$  J/ψ (complete set) Radiative transitions in charmonium & bottomonium  $> n^3 S_1 \rightarrow \gamma (n-1)^3 P_T (\chi_T)$  $> n^{3}P_{T} \rightarrow \gamma (n, n-1)^{3}S_{1}$  $> n^3 S_1 \rightarrow \gamma$  (n-1,n-2)  $^1 S_0$  ( $\eta_0$ ) • 1<sup>st</sup> Observation of  $\Upsilon(1^3D_2)$  (Review)  $\succ \Upsilon(1^{3}D_{2}) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S)$ ?

### $\psi$ (2S) $\rightarrow$ XJ/ $\psi$

 $\psi$ (2S) decays: **Transitions: J**/ψ π<sup>+</sup>π<sup>−</sup> **J**/ψ π<sup>0</sup>π<sup>0</sup> **J**/ψ η  $\Sigma_{excl}$ • **J/**ψ π<sup>0</sup> **Radiative Decays:** • γχ<sub>cJ</sub> (E1) • γη<sub>c</sub> (M1) • γη (M1) Annhilation: Dileptons • direct decay  $\rightarrow$ light hadrons

 BRs for XJ/ψ, π<sup>+</sup>π<sup>-</sup>J/ψ serve as normalizing modes

- Many relative msmts, few absolute
- PDG fit takes input from different expmts & eras
- A 1<sup>st</sup>: precision, totality of channels, internal ratios w/ correlations handled

Questions:

- >  $\pi^0 \pi^0 \mathbf{J}/\psi$  :  $\pi^+\pi^- \mathbf{J}/\psi$  ?
- > B( $\psi$ (2S)  $\rightarrow$  light hadrons) ?
- $\succ XJ/\psi \Sigma_{excl} ? \implies \Sigma \gamma \chi_{cJ} \rightarrow \gamma \gamma J/\psi)$

#### Strategy

Fully reconstruct ● J/ψ →ee,μμ > Use E/p only as ID •  $\eta \rightarrow \gamma \gamma \& \pi^+ \pi^- \pi^0$ Loose selection to minimize systematics Small bgd, mostly cross-feed among themselves Trigger eff>98.6%

#### **● #**ψ**(2S): ±3%**

- > Robust against cut variation: ε=~50-85%
- Add bremsstrahlung γ's to lepton momenta within 100mr cone
   ee/μμ = 1 ?

 $\psi(2S) \rightarrow X J/\psi , J/\psi \rightarrow |+|^{-}$ 



#### Excellent Data/MC agreement

●**M(I+I-)**, **M(**ππ) •M(ππ-recoil) •E/p of leptons • $M(\pi^0, \eta \rightarrow \gamma\gamma, \eta \rightarrow \pi^+\pi^-\pi^0)$ ο cos θ **•**p(J/ψ) • $p(\pi^{\pm},\pi^{0})$  at all momenta •See supplemental slides

### $\psi$ (2S) $\rightarrow \pi\pi J/\psi, J/\psi \rightarrow |+|$ -



 $\psi(2S) \rightarrow \pi \pi J/\psi, J/\psi \rightarrow |+|^{-1}$ 



QWG3 B Heltsley Oct 2004

## $\psi$ (2S) $\rightarrow$ $\eta$ J/ $\psi$ , $\eta \rightarrow \gamma\gamma$ , $3\pi$



#### Uncertainties (relative, %)

| Channel                                   | Stat(%) | 2 bigge                            | Total*(%)                          |      |
|-------------------------------------------|---------|------------------------------------|------------------------------------|------|
| π⁺π⁻ <b>J/</b> ψ                          | 0.4     | <b>4 (</b> π <sup>±</sup> <b>)</b> | 0.5 (dec rad)                      | 5.3  |
| π <sup>0</sup> π <sup>0</sup> <b>J/</b> ψ | 0.9     | <b>2 (</b> π <sup>±</sup> <b>)</b> | <b>2 (</b> π <sup>0</sup> <b>)</b> | 4.6  |
| η <b>(</b> γγ <b>)J/</b> ψ                | 2.2     | <b>2 (</b> π <sup>±</sup> <b>)</b> | <b>1</b> ( $\pi^{0}$ , xfeed)      | 4.9  |
| ղ <b>(3</b> π <b>)J/</b> ψ                | 3.7     | <b>4 (</b> π <sup>±</sup> <b>)</b> | 1.5 (xfeed)                        | 6.9  |
| π <sup>0</sup> <b>J/</b> ψ                | 11.9    | <b>5</b> (xfeed)                   | <b>2 (</b> π <sup>±</sup> <b>)</b> | 13.7 |
| ΧJ/ψ                                      | 0.3     | <b>2 (</b> π±)                     | 0.5 (dec rad)                      | 4.1  |

\*Total includes  $\#\psi(2S)$  normalization error of  $\pm 3\%$ 

We assign a sys error of 1% per  $\pi^{\pm}$  & add linearly over  $\pi^{\pm}$ 's per event. Similarly, 1% per  $\pi^{0}$ .

QWG3 B Heltsley Oct 2004

#### CLEO Preliminary: BR in % relerror in %

|                                           | В                                     | B/B <sub>XJ/ψ</sub>                     | <b>Β/Β</b> <sub>π+π-<b>J</b>/ψ</sub> |
|-------------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------|
| <u>у</u> т/                               | 59.6±0.2±2.4 <sup>4.1%</sup>          | CLEO Prelim                             |                                      |
| <b>Λ J</b> /Ψ                             | 9 <sup>59</sup> 55±7 <sup>12.7%</sup> | PDG avg, not fit                        |                                      |
| <b>Τ/</b> γγ                              | 33.3±0.1±1.8 <sup>5.3%</sup>          | 55.8±0.3±1.1 <sup>2.1%</sup>            |                                      |
| ππ <b>υγ</b> ψ                            | 32.3±1.4 <sup>4.3%</sup>              | 53.5±0.7±1.6 <sup>3.3%</sup>            | BES                                  |
|                                           | 16.9±0.2±0.8 <sup>4.6%</sup>          | 28.3±0.3±0.6 <sup>2.2%</sup>            | 50.7±0.5±1.5 <sup>3.0%</sup>         |
| π <sup>ο</sup> π <sup>ο</sup> <b>J</b> /ψ |                                       | 32.7±1.4 <sup>4.3%</sup>                | 57.0±0.9±2.6 <sup>4.8%</sup>         |
| $n(\gamma\gamma)$ T/ $\gamma$             | 3.3±0.1±0.1 <sup>4.9%</sup>           | 5.5±0.1±0.1 <sup>2.7%</sup>             | 9.9±0.2±0.2 <sup>3.3%</sup>          |
| η(γγ) σγφ                                 | 3.0±0.1±0.2 <sup>8.3%</sup>           | ∞ <sup>9</sup> 6.9 ± 0.8 <sup>12%</sup> | 9.8±0.5±1.0 <sup>11.4%</sup>         |
| η <b>(3</b> π <b>) J/</b> ψ               | 3.3±0.1±0.2 <sup>6.9%</sup>           | 5.5±0.2±0.2 <sup>4.6%</sup>             | 9.9±0.4±0.2 <sup>4.2%</sup>          |
| π <sup>0</sup> <b>J/</b> ψ                | 0.15±0.02±0.01 <sup>14%</sup>         | 0.26±0.03±0.01 <sup>13%</sup>           | 0.46±0.05±0.03 <sup>13%</sup>        |
|                                           | 0.143±0.013±0.011 <sup>13%</sup>      |                                         |                                      |

#### Further Results

•  $B(J/\psi \rightarrow ee)/B(J/\psi \rightarrow \mu\mu)=$ 0.9872±0.0093 (1.4 $\sigma$  < 1) > BES: 1.011±0.021

B(ψ(2S)→light hadrons) =

 Σexcl - Σγχ<sub>cj</sub> - γη<sub>c</sub> - Σθε = 17.2±3.6%
 CLEO results for all terms except Σθε
 Q(1.h.)=B(ψ(2S)→1.h.)/ B(J/ψ→1.h.)= 19.8±4.1%

 Incl-Excl= 6.2±1.1%
 =? indirect ΣB(ψ(2S)→γχ<sub>cj</sub>)×B(χ<sub>cj</sub>→γ J/ψ) )

>1.5σ>BES (4.5±0.2%), 2σ>PDG(CBAL) (3.9±0.3%)

# Summary: $\psi(2S) \rightarrow XJ/\psi$

• NEW, PRELIMINARY CLEO msmts of all  $J/\psi$  excl hadronic BRs & incl  $J/\psi$  as well > Systematics limited, many cross checks performed Most precise, or comparable to previous •  $\pi^0 \pi^0$  absolute rate msd for 1<sup>st</sup> time > Full reconstruction of both  $\pi^{0's}$ > Lower ratios of BR's than BES, E835, E760  $> \pi^0 \pi^0 / \pi^+ \pi^-$  ratio ~1/2 as expected from isospin • (Incl-Excl) provides BR cross check Ist single-experiment test of inclusive "12% rule"

#### CLEO Y & $\psi(2S)$ Data



>10-fold increase for the narrow Υ resonances
 1st experiment to match Crystal Ball sensitivity for photon transitions from ψ(25)

#### $\psi$ (2S) Inclusive $\gamma$ Spectrum



QWG3 B Heltsley Oct 2004

η<sub>c</sub>(1S) & η<sub>c</sub>(2S)



### $\psi$ (2S) E1 & M1 transitions

| B(ψ(2S) →γX)<br>in %                                 | E1 Lines             | Hindered M1 Line    |                     |                     |  |  |
|------------------------------------------------------|----------------------|---------------------|---------------------|---------------------|--|--|
|                                                      | J=2                  | J=1                 | J=0                 | J=0                 |  |  |
| CLEO                                                 | 9.33±0.14±0.61       | 9.07±0.11±0.54      | 9.22±0.11±0.46      | 0.32±0.04±0.06±0.03 |  |  |
| C.Ball                                               | 8.0±0.5±0.7          | 9.0±0.5±0.7         | 9.9±0.5±0.8         | 0.28±0.06           |  |  |
| PDG                                                  | 7.8±0.8              | 8.7±0.8             | 9.3±0.8             | 0.28±0.06           |  |  |
| ratio                                                | 1.20±0.15            | 1.04±0.11           | 0.99±0.10           | 1.21±0.38           |  |  |
| Eγ in<br>MeVE1 Lines: Photon energiesHindered M1 Lin |                      |                     |                     |                     |  |  |
|                                                      | J=2                  | J=1                 | J=0                 | J=0                 |  |  |
| CLEO                                                 | 128.00±0.13±0.64     | 172.05±0.19±0.86    | 6 261.99±0.37±1     | .31 646.2±2.6±3.23  |  |  |
| PDG                                                  | 127.52 ± 0.13        | 171.21 ± 0.12       | 260.72 ±0.38        | 638.44±0.81         |  |  |
| Ratio (                                              | 1.0038±0.0014±0.0050 | 1.0049±0.0013±0.005 | 0 1.0049±0.0020±0.0 | 0050 1.012±0.009    |  |  |

Good agreement on branching ratios, ~smallest errors

- Hindered M1 transition confirmed!
- Use results to recalibrate calorimeter energy scale for  $\Upsilon$ 's

### **Bottomonium transitions**



#### <u>2</u> sets of lines to P states

 $\Upsilon(nS) \rightarrow \gamma \chi_b$ 



# $\Upsilon(3S) \rightarrow \chi_{bJ}(1P_J) \gamma$



 $\Upsilon(2S) \rightarrow \chi_{b2} \gamma$ 



# $\chi_b$ , $\chi_b'$ Masses

| $\Upsilon$ State        | Mass (MeV)         |       |
|-------------------------|--------------------|-------|
| 25                      | 10023.26±0.31      | PDG   |
| 35                      | 10355.2 ± 0.5      | input |
| <b>2P</b> <sub>2</sub>  | 10268.80±0.06±0.57 |       |
| <b>2</b> P <sub>1</sub> | 10255.58±0.07±0.56 |       |
| <b>2P</b> <sub>0</sub>  | 10232.94±0.16±0.68 | UNLY  |
| 1P <sub>2</sub>         | 9912.06±0.08±0.43  |       |
| 1P <sub>1</sub>         | 9892.83±0.09±0.43  |       |
| <b>1</b> P <sub>0</sub> | 9859.36±0.19±0.53  | UNL7  |

#### **Electric Dipole Transitions**

$$\Gamma_{E1}(n_i S \to n_f P) = \frac{4}{27} \alpha e_Q^2 (2J+1) E_\gamma^3 \langle n_f P | r | n_i S \rangle^2$$

- El matrix element is <u>spin independent</u> in NR limit
- Below, ratio of  $\Gamma_{E1}$ 's normalized to  $(2J+1)E_{\gamma}^{3}$ .
- Also results from  $\psi' \rightarrow \chi_{cJ} \gamma$  analysis are shown.

| $\begin{array}{c c} (J=2)/(J=1) & 1.00\pm0.01\pm0\\ \chi_b(2P): \ (J=0)/(J=1) & 0.76\pm0.02\pm0\\ (J=0)/(J=2) & 0.76\pm0.02\pm0 \end{array}$ | .05<br>.07<br>.09 • In bb, (J=2)/(J=1) ~ 1<br>.09 consistent with NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c c} (J=2)/(J=1) & 1.01\pm0.02\pm0\\ \chi_b(1P): \ (J=0)/(J=1) & 0.82\pm0.02\pm0\\ (J=0)/(J=2) & 0.81\pm0.02\pm0 \end{array}$ | .08<br>.06<br>.11 expectation.<br>.11 in cc, (J=2)/(J=1) > 1<br>due to smaller quark mass.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{ccc} (J=2)/(J=1) & 1.50\pm0.02\pm0\\ \chi_c(1P): \ (J=0)/(J=1) & 0.86\pm0.01\pm0\\ (J=0)/(J=2) & 0.59\pm0.01\pm0 \end{array}$ | <ul> <li>.05</li> <li>.06</li> <li>.05</li> <li>.06</li> <li>.05</li> <li>.05</li></ul> |

#### $\Upsilon(3S) \rightarrow \eta_b(1S) \gamma \& \Upsilon(2S) \rightarrow \eta_b(1S) \gamma$



## Test potential models $\Gamma_{\rm M1}$



Models from the compilation by Godfrey&Rosner PR D64, 074011 (2001); Ebert,Faustov, and Galkin, PRD67, 014027(2003); Lahde NP A714, 183(2003) [scaled here by phase-space]

Limits are best here at high E where lower bgd

#### •Data rule out many predictions!

QWG3 B Heltsley Oct 2004

## Test potential models $\Gamma_{\rm M1}$



#### 1<sup>st</sup> Observation of $\Upsilon(1^{3}D_{2})$



#### Potential models: $M(\Upsilon(1D))=?$

# $\bullet$ Models which have success with other $\Upsilon$ masses

 $\Rightarrow$  success w/mass of  $\Upsilon(1^{3}D_{2})$ •Fits to guarkonia masses possible with as few free parameters as one (accuracy ~0.2% of mass, 2% of excitation energy) - perhaps the most convincing proof for quark structure of hadrons Several potential models consistent w/data

#### Beyond potential models

#### Advances in lattice QCD calculations:



 $\Upsilon(1^{3}D_{2}) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S)$ ??



Could X(3872) be a 1D state? Let's see how a D state in the  $\Upsilon$  system behaves.

 $\Upsilon(3S) \rightarrow \gamma\gamma \pi^{+}\pi^{-} \Upsilon(1S),$  $\Upsilon(1S) \rightarrow I^{+}I^{-}$ is our calibration signal

 $\Upsilon(1^{3}D_{2}) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S)$ ? No.



 $\eta \Upsilon$ (1S) also ruled out at 2.3×10<sup>-4</sup>

QWG3 B Heltsley Oct 2004

#### Conclusions

• CLEO has new, preliminary results on transitions to a  $J/\psi$  w/1 or more hadrons > Complete set, improved precision • CLEO has final results (E, BR) on radiative transitions from the  $\psi(2S)$  &  $\Upsilon(nS)$  system  $> \eta_{b}$ 's not yet seen, some potential models ruled out  $> \eta_c$  confirmed > Old nc' from CBAL ruled out At current known  $\eta_c$  mass,  $\gamma$  too soft, broad for CLEO > Relativistic effects seen for BOTH cc & bb  $> \Upsilon(1^{3}D_{2})$  seen •  $\Upsilon(1^{3}D_{2})$  observed in photon transitions from  $\Upsilon$ (3S), not in  $\rightarrow \pi^+\pi^-\Upsilon$ (1S)

### Supplemental Slides

### $\psi(2S) \rightarrow \pi \pi J/\psi, J/\psi \rightarrow |+|^-$



QWG3 B Heltsley Oct 2004



 $\psi$ (2S) $\rightarrow \pi^0 J/\psi$ ,  $\pi^0$ \_



QWG3 B Heltsley Oct 2004

#### **Decay Radiation**

Model with PHOTOS
Also search for explicit radiation as below
Reasonable but not perfect agreement
Assign 0.5% error, separately for e, µ



#### y Transitions: Detector

Excellent charged particle detection
 EM calorimeter - Essential for γ spectrocopy
 ~8000 CsI(Tl) crystals + photo-diodes
 First crystal calorimeter in magnetic field



### ψ(2S) Photon Spectrum



comparison with C.Ball only (harmful at low photon energies)

## $\Upsilon' \rightarrow \chi_{b1} \gamma$







 $\Upsilon'' \rightarrow \chi_{b2} \gamma$ 



 $\Upsilon'' \rightarrow \chi_{b1}' \gamma$ 



 $\Upsilon'' \rightarrow \chi_{b0} \gamma$ 



#### Tables of Results

|                                                           | This msmt           | CLEO2 (1998)                                | PDG            |
|-----------------------------------------------------------|---------------------|---------------------------------------------|----------------|
| BR(Υ ' $\rightarrow \chi_{b0}$ γ)                         | 3.75±0.12±0.47%     | 3.4±0.5±0.6 %                               | 3.8±0.6 %      |
| $BR(\Upsilon' \to \chi_{b1} \gamma)$                      | 6.93±0.12±0.41%     | 6.9±0.5±0.9 %                               | 6.8±0.7 %      |
| $BR(\Upsilon' \to \chi_{b2} \gamma)$                      | 7.24±0.11±0.40%     | 7.4±0.5±0.8 %                               | 7.0±0.6 %      |
| $E_{\gamma}(\Upsilon' \to \chi_{b0} \gamma)$              | 162.56±0.19±0.42MeV | 162.0±0.8±1.2 MeV                           | 162.1±1.0 MeV  |
| $E_{\gamma}(\Upsilon' \rightarrow \chi_{b1} \gamma)$      | 129.58±0.09±0.29MeV | 128.8±0.4±0.6 MeV                           | 129.8±0.5 MeV  |
| $E_{\gamma}(\Upsilon' \rightarrow \chi_{b2} \gamma)$      | 110.58±0.08±0.30MeV | 110.8±0.3±0.6 MeV                           | 110.1±0.5 MeV  |
|                                                           | This msmt           | CLEO2 (1991)                                | PDG            |
| $BR(\Upsilon'' \to \chi_{b0}' \gamma)$                    | 6.77±0.20±0.65%     | 4.9 <sup>+0.3</sup> -0.4 <sup>±</sup> 0.6 % | 5.4±0.6 %      |
| $BR(\Upsilon'' \to \chi_{b1'} \gamma)$                    | 14.54±0.18±0.73%    | 10.5 <sup>+0.3</sup> <sub>-0.2</sub> ±1.3 % | 11.3±0.6 %     |
| $BR(\Upsilon'' \to \chi_{b2'} \gamma)$                    | 15.79±0.17±0.73%    | 13.5±0.3±1.7 %                              | 11.4±0.8 %     |
| $BR(\Upsilon'' \to \chi_{b0} \gamma)$                     | 0.30±0.04±0.10%     | -                                           | -              |
| $E_{\gamma}(\Upsilon'' \rightarrow \chi_{b0}' \gamma)$    | 121.55±0.16±0.46MeV | 122.3±0.3±0.6 MeV                           | 122.8±0.5 MeV  |
| $E_{\gamma}(\Upsilon'' \rightarrow \chi_{b1}' \gamma)$    | 99.15±0.07±0.25MeV  | 99.5±0.1±0.5 MeV                            | 99.90±0.26 MeV |
| $E_{\gamma}(\Upsilon^{''} \rightarrow \chi_{b2}' \gamma)$ | 86.04±0.06±0.27MeV  | 86.4±0.1±0.4 MeV                            | 86.64±0.23 MeV |



#### Table 6: Systematic errors on the rate measurements.

| initial state                      | $\Upsilon(2S)$ |                |                | $\Upsilon(3S)$ |                |                |                |  |
|------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|
| final state                        | $\chi_b(1P_0)$ | $\chi_b(1P_1)$ | $\chi_b(1P_2)$ | $\chi_b(2P_0)$ | $\chi_b(2P_1)$ | $\chi_b(2P_2)$ | $\chi_b(1P_0)$ |  |
| number of $\Upsilon(nS)$           | 1.5%           |                |                | 1.7%           |                |                |                |  |
| mc stat                            | 0.9%           | 1.0%           | 1.1%           | 0.9%           | 1.1%           | 1.1%           | 0.5%           |  |
| order of bkg polynomial            | 0.1%           | 0.1%           | 0.1%           | 6.1%           | 1.9%           | 1.4%           | 16.3%          |  |
| fitting range (signal)             | 2.6%           | 1.0%           | 0.6%           | 2.7%           | 0.9%           | 0.6%           | 8.6%           |  |
| fitting range (background)         | 0.3%           | < 0.1%         | < 0.1%         | 0.1%           | 0.1%           | 0.1%           |                |  |
| background shape (continuum)       | 1.3%           | 0.4%           | 1.1%           | 3.0%           | 0.3%           | 0.9%           |                |  |
| МІР                                |                |                |                | 3.0%           | 1.0%           | 0.6%           |                |  |
| $\sigma_0$                         |                |                |                |                |                |                | 3.3%           |  |
| $E_{scale}$                        |                |                |                |                |                |                | 3.6%           |  |
| $\pi^0$ suppression                |                |                |                |                |                |                | 17.4%          |  |
| shower simulation                  | 9.9%           | 5.1%           | 2.0%           | 1.5%           | 3.1%           | 2.5%           | 16.5%          |  |
| E vs lnE                           | 5.6%           | 0.7%           | 4.4%           | 3.5%           | 0.5%           | 1.8%           |                |  |
| signal shape                       | 3.7%           | 2.0%           | 1.5%           | 2.9%           | 1.0%           | 1.2%           | 8.0%           |  |
| $\Upsilon(2S)X$ and $\Upsilon(1D)$ |                |                |                | 1.4%           | 1.5%           | 1.2%           | 5.1%           |  |
| Total                              | 12.4%          | 5.9%           | 5.5%           | 9.6%           | 5.0%           | 4.6%           | 32.1%          |  |

#### $\chi_b$ Systematic Errors

#### Table 8: Systematic Errors on the photon energy measurements.

| initial state                             | $\Upsilon(2S)$ |                |                | $\Upsilon(3S)$ |                |                |                |       |
|-------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|
| final state                               | $\chi_b(1P_0)$ | $\chi_b(1P_1)$ | $\chi_b(1P_2)$ | r(1P)          | $\chi_b(2P_0)$ | $\chi_b(2P_1)$ | $\chi_b(2P_2)$ | r(2P) |
| shower simulation                         | 0.07%          | 0.05%          | 0.14%          | 1.66%          | 0.29%          | 0.04%          | 0.02%          | 1.08% |
| E vs lnE                                  | 0.07%          | 0.07%          | 0.04%          | 0.06%          | 0.04%          | 0.06%          | 0.01%          | 0.43% |
| order of bkg polynomial                   | < 0.01%        | 0.00%          | < 0.01%        | 0.01%          | 0.01%          | 0.05%          | 0.02%          | 0.63% |
| fitting range (signal)                    | 0.01%          | 0.01%          | 0.01%          | 0.06%          | 0.02%          | 0.02%          | 0.01%          | 0.42% |
| fitting range (background)                | 0.02%          | < 0.01%        | < 0.01%        | 0.02%          | 0.01%          | < 0.01%        | < 0.01%        | 0.07% |
| background shape (continuum)              | 0.08%          | < 0.01%        | 0.11%          | 0.98%          | 0.10%          | 0.01%          | 0.04%          | 0.64% |
| signal shape                              | 0.10%          | 0.02%          | 0.01%          | 0.38%          | 0.04%          | < 0.01%        | 0.03%          | 0.45% |
| MIP                                       |                |                |                |                | 0.03%          | 0.03%          | < 0.01%        | 0.89% |
| $\Upsilon(2S)X \text{ and } \Upsilon(1D)$ |                |                |                |                | 0.08%          | 0.09%          | 0.03%          | 1.25% |
| sub total                                 | 0.16%          | 0.09%          | 0.18%          | 0.38%          | 0.32%          | 0.13%          | 0.07%          | 2.22% |
| CC calibration                            |                | 0.20%          |                | 0.00%          | 0.20%          | 0.21%          | 0.30%          | 0.54% |
| Total                                     | 0.26%          | 0.22%          | 0.27%          | 1.97%          | 0.38%          | 0.25%          | 0.31%          | 2.28% |

#### **Electric Dipole Transitions II**

$$\Gamma_{E1}(n_i S \to n_f P) = \frac{4}{27} \alpha e_Q^2 (2J+1) E_\gamma^3 \langle n_f P | r | n_i S \rangle^2$$

- Extract the above E1 matrix element by  $\Gamma_{E1}$ =BR(n<sub>f</sub>S $\rightarrow$ n<sub>f</sub>P) $\cdot\Gamma_{total}(\Upsilon(nS))$  for each J's and using the latest CLEO measurements of  $\Gamma_{total}(\Upsilon(2S))$  and  $\Gamma_{total}(\Upsilon(3S))$ .
- Matrix elements averaged over spins are shown below along with various predictions.
- Also result from  $\psi' \rightarrow \chi_{cJ} \gamma$  analysis is shown using  $\Gamma_{total}(\psi(2S))=277\pm22$ keV (PDG)



#### Exp value

- o = predictions (non-relativistic)
- ▲ = predictions (relativistic) (averaged over spins)
- cc system is calling for relativistic corrections. The correction is small in bottomonium.
- In bb system, non-relativistic calculations seem to reproduce the measured rates.

48