Upsilon(1S,2S,3S) Studies at CLEO

Helmut Vogel Carnegie Mellon University (for the CLEO Collaboration)

FPCP 2004 Daegu, Korea, Oct 4-9, 2004

Studies of Υ (1S,2S,3S): Outline

- Motivation for studying Quarkonium
- CLEO III detector, data sample and quality
- Measurement of $B_{\mu\mu}(Y(nS))$ (n=1,2,3)
- Hadronic transitions within Upsilon states
- E1 and M1 Photon transitions
- Upsilon decays to Charmonium states
- Conclusion

Motivation for Studying Quarkonium

- Simplest strongly interacting system
- QCD equivalent of positronium
- Non-relativistic for heavy quarks (QQ̄)
 Q=c: β² ~ 0.25; Q=b: β² ~ 0.08
- Tests potential models, V(r) = -4/3 α_s/r + k r
- Tests Lattice QCD calculations

The Upsilon System: Bottomium

Rich spectroscopy,

many transitions - hadronic, photonic

Y(1S,2S,3S) directly produced in e+eannihilation

CLEO III Data Sample on Y(1S,2S,3S)

Orders of magnitude improvement in statistics, plus a much more powerful detector!

The CLEO III Detector

$\boldsymbol{B}_{\!\boldsymbol{\mu}\boldsymbol{\mu}}$ for the Υ States

$\boldsymbol{B}_{\!\!\mu\mu}$ for the Υ States

Measurement of $B(\Gamma(nS) \rightarrow \mu^+\mu^-)$

Leptonic (Γ_{II}) and total widths (Γ) of $\Upsilon(n^3S_1)$ resonances are not very well established. They have 4 - 16% relative errors.

 Γ and Γ_{ee} are used in many PQCD calculations

Precise measurement of $B(I^+I^-)$ allows to determine Γ of $\Upsilon(nS)$ precisely (precise Γ_{∞} measurement is also needed, expected soon from CLEO):

 $\Gamma = \Gamma_{\parallel} / B_{\parallel} - \Gamma_{ee} / B_{\mu\mu}$ (assuming lepton universality)

→ Measure decay rate to muon pairs relative to hadronic decay rate:

$$\overline{B}_{\mu\mu} = \frac{\Gamma_{\mu\mu}}{\Gamma_{had}} = \frac{N(Y \to \mu^+ \mu^-)/\varepsilon_{\mu\mu}}{N(Y \to hadrons)/\varepsilon_{had}}$$

 $B_{\mu\mu} = \frac{\mu\mu}{\Gamma} = \frac{\mu\mu}{\Gamma_{had}(1+3\Gamma_{\mu\mu}/\Gamma_{had})} = \frac{-\mu\mu}{1+3B_{\mu\mu}}$

... and details such as muon FSR allow for high precision.

$\boldsymbol{B}_{\mu\mu}$ for the Bound Υ States [CLEO, submitted to PRL]

	B _{μμ} (%)		$\Gamma_{\rm tot}~({\rm keV})$	
	CLEO preliminary	PDG	CLEO preliminary	PDG
$\Upsilon(1S)$	$2.53 \pm 0.02 \pm 0.05$	2.48 ± 0.06	52.1 ± 1.5	52.5 ± 1.8
$\Upsilon(2S)$	$2.11 \pm 0.03 \pm 0.05$	1.31 ± 0.21	28.0 ± 1.4	44 ± 7
$\Upsilon(3S)$	$2.44 \pm 0.07 \pm 0.05$	1.81 ± 0.17	19.9 ± 2.0	26.3 ± 3.5

Few % precision reached !

 $B_{\mu\mu}(\Upsilon(2,3S))$ significantly higher than prior results Await CLEO Γ_{ee} !

Hadronic Transitions between Upsilon States

Di-Pion Transitions from T(3S)

Preliminary ranching ratio measurements for $\Upsilon(2S)$ and $\Upsilon(3S)$:

 $B(\Upsilon(3S) \rightarrow \pi^0 \pi^0 \Upsilon(2S)) = 2.02 \pm 0.18 \pm 0.38$ %

 $B(\Upsilon(3S) \rightarrow \pi^0 \pi^0 \Upsilon(1S)) = 1.88 \pm 0.08 \pm 0.31 \%$

 $\Upsilon(3S) \rightarrow \pi^0 \pi^0 \Upsilon(2S)$: $\pi^0 \pi^0$ effective mass spectrum has a shape consistent with several theoretical predictions $\Upsilon(3S) \rightarrow \pi^0 \pi^0 \Upsilon(1S)$: $\pi^0 \pi^0$ effective mass spectrum has "double humped" shape, also observed in the charged pion transitions

NEW: Observation of $\chi_b(2P) \rightarrow \omega \Upsilon(1S)$

New Υ hadronic transition - not $\pi\pi!$

First hadronic transition for χ_b states!

Fully reconstructed exclusive channel: Cascade starts with E1 γ from Υ (3S); ends with Υ (1S) to lepton pairs

Preliminary results reported in 2003; now final, with full Y(3S) data sample

$$\chi_{b}(2P) \rightarrow \omega \Upsilon (1S)$$

Final Results:

 $B(\chi_{b1}' \to \omega \Upsilon(1S)) = (\mathbf{1.63}^{+0.35}_{-0.31} \cdot 0.16_{-0.15})\%$ +0.32 +0.11 $B(\chi_{b2}' \to \omega \Upsilon(1S)) = (\mathbf{1.10}^{-0.28}_{-0.10} \cdot 0.10_{-0.28})\%$

J = 0 kinematically forbidden!

Roughly equal for J = 1 and 2 $r_{2/1}$ predicted to be 1.3 ± 0.3

[Voloshin - hep-ph/0304165]

Very large rate considering limited phase space!

E1 and M1 Photon Transitions

Bottomonium

Typical λ_{γ} ~0.3-2fm ≥ mean quark separation ~0.3~0.8fm

Lowest multipoles dominate: E1: $\Delta L=1, \Delta S=0$ M1: $\Delta L=0, \Delta S=1$ $(\Gamma_{M1} << \Gamma_{E1})$

Mass splitting are very similar between cc and bb systems

 \rightarrow The responsible inter-quark force is flavor independent.

Detecting Photon Transitions

- EM calorimeter Essential for photon spectroscopy
 - ~8000 CsI(Tl) crystals + photodiodes
 - First crystal calorimeter in magnetic field
- •Excellent charged particle detection
- ·Large solid angle coverage

at:

Photon Transitions

Analysis procedure

- Same photon selection as in $\psi(2s)$ analysis (veto tracks pointing at shower, E9/E25, suppress hot crystals
- Suppress photons from π^0 (cos $\theta_{\gamma\gamma}$ >0.7) for analysis of high energy photons only
- · Use $\Upsilon(1S)$ +continuum+(low order polynomial) for BKG parametrization ($E_{\gamma} < 200 \text{MeV}$)

Photon Transitions

 $\Upsilon(2S) \rightarrow \chi_b(1P_J) \ \gamma \text{ and } \Upsilon(3S) \rightarrow \chi_b(2P_J) \ \gamma$

- 17 -

- 18 -

Search for $\eta_{b}(1^{1}S_{0})$, $\eta_{b}(2^{1}S_{0})$

mut

Hindered M1 transitions

Rates strongly suppressed compared to E1

Also, masses of singlet states not known experimentally Fitting to $\Upsilon(3S) \rightarrow \eta_b(1S) \ \gamma \ and \ \Upsilon(2S) \rightarrow \eta_b(1S) \ \gamma$

The UL's are looser in lower energy region due to higher background (dominated by π^{0} 's)

• Test potential model predictions for Γ_{M1}

Models from the compilation by Godfrey&Rosner PR D64, 074011 (2001); Ebert,Faustov, and Galkin, PRD67, 014027(2003); Lahde NP A714, 183(2003) [scaled here by phase-space]

• Many calculations are ruled out!

• Test potential model predictions for Γ_{M1}

Results on E1 Transitions in the Upsilon System

	CLEO III (2004)	CLEO II (1998)	PDG (average of observed photon energies)
$BR(\Upsilon' \to \chi_{b0} \gamma)$	3.75±0.12±0.47%	3.4±0.5±0.6 %	3.8±0.6 %
$BR(\Upsilon' \to \chi_{b1} \gamma)$	6.93±0.12±0.41%	6.9±0.5±0.9 %	6.8±0.7 %
$BR(\Upsilon' \to \chi_{b2} \gamma)$	7.24±0.11±0.40%	7.4±0.5±0.8 %	7.0±0.6 %
$E_{\gamma}(\Upsilon' \rightarrow \chi_{b0} \gamma)$	162.56±0.19±0.42MeV	162.0±0.8±1.2 MeV	162.1±1.0 MeV
$E_{\gamma}(\Upsilon' \rightarrow \chi_{b1} \gamma)$	129.58±0.09±0.29MeV	128.8±0.4±0.6 MeV	129.8±0.5 MeV
$E_{\gamma}(\Upsilon' \rightarrow \chi_{b2} \gamma)$	110.58±0.08±0.30MeV	110.8±0.3±0.6 MeV	110.1±0.5 MeV
	This measurement	CLEO2 (1991)	PDG
$BR(\Upsilon''\to\chi_{b0}'\gamma)$	6.77±0.20±0.65%	4.9 ^{+0.3} -0.4 ±0.6 %	5.4±0.6 %
$BR(\Upsilon''\to\chi_{b1}'\gamma)$	14.54±0.18±0.73%	$10.5^{+0.3}_{-0.2} \pm 1.3$ %	11.3±0.6 %
$BR(\Upsilon''\to\chi_{b2}'\gamma)$	15.79±0.17±0.73%	13.5±0.3±1.7 %	11.4±0.8 %
$BR(\Upsilon'' \to \chi_{b0} \gamma)$	0.30±0.04±0.10%	-	-
$E_{\gamma}(\Upsilon'' \rightarrow \chi_{b0}' \gamma)$	121.55±0.16±0.46MeV	122.3±0.3±0.6 MeV	122.8±0.5 MeV
$E_{\gamma}(\Upsilon'' \rightarrow \chi_{b1}' \gamma)$	99.15±0.07±0.25MeV	99.5±0.1±0.5 MeV	99.90±0.26 MeV
From excl. (CBX02-20)	99.08±0.17±0.34MeV		
$E_{\gamma}(\Upsilon^{\prime\prime} \rightarrow \chi_{b2}^{\prime} \gamma)$	86.04±0.06±0.27MeV	86.4±0.1±0.4 MeV	86.64±0.23 MeV
From excl. (CBX02-20)	86.09±0.30±0.29MeV		

- 25 -

- 26 -

E1 Transitions:

Fine splitting in 1P and 2P

The fine structure splitting can be quantified by r = (m2-m1)/(m1-m0)

r gives properties of Lorentz transformation (scalar and/or vector) of the confining potentials.

•

	CLEOIII	CLEO2
r(1P)	0.57±0.01±0.01	$0.54 \pm 0.02 \pm 0.02$
r(2P)	0.58±0.01±0.01	0.57±0.01±0.01

Our results indicate that there is no difference between the different radial excitations of the P waves in bb.

The L=2 ("D") States in Quarkonium

Photon Transitions to $\Upsilon(1D)$ [CLEO]

Four γ cascade; exclusive Υ (1S) channel

Background thru 2³S₁

First reported at ICHEP02 with 80% of data. Now final

Accepted by PRD [hep-ex/0404021]

Final $\Upsilon(1D)$ Analysis Results [CLEO]

[hep-ex/0404021; accepted by PRD]

Mass (MeV)

"D" State Impact on LQCD

Υ(1D): What is NOT seen !!!

Also see no evidence for enhancement of $\Upsilon(1D) \rightarrow \eta \Upsilon(1S)$ as postulated by Voloshin [PL B562, 68 (2003)]

Upsilon Decay to Charmonium: $\Upsilon(1S) \rightarrow (c\overline{c}) X$

- onia production and onia decay
- test of color-octet v. color-singlet models
- similar rate predictions: B ~ 6 x 10⁻⁴
- very different momentum spectra
- may have some relevance to cccc production

[Chueng, Keung, Yuan: PRD 54, 929 (1996)]

Upsilon(1S) Decay to Charmonium

The J/ψ Signal

All events passing cuts for $\mu^+\mu^-$ and for e^+e^- $\mu^+\mu^-$ events binned in $x\equiv p_{J/\psi}/p_{
m max}$

$\Upsilon(1S) \rightarrow J/\psi X$

p/p_{max} much too soft for octet model

 $B(\Upsilon(1S) \rightarrow J/\psi X) =$ (6.4 ± 0.4 ± 0.6) × 10⁻⁴

This includes feed-down from other charmonia

Rate consistent with either octet or singlet model

Production and helicity angular distributions also determined

All larger than the octet predictions.

Υ(1S) Decay to Charmonium (hep-ex/0407030)

Final state	Branching Ratio	Feed-down to J/ψ
J/ψ	$(6.4 \pm 0.4 \pm 0.6) imes 10^{-4}$	-
$\psi(2S)$	$\textbf{0.41} \pm \textbf{0.11} \pm \textbf{0.08}$	$\boldsymbol{0.24 \pm 0.06 \pm 0.05}$
χ_{c_0}	$<\!\!7.4$	$<\!0.082$
χ_{c_1}	$\boldsymbol{0.35 \pm 0.08 \pm 0.06}$	$\textbf{0.11} \pm \textbf{0.03} \pm \textbf{0.02}$
χ_{c_2}	$\boldsymbol{0.52 \pm 0.12 \pm 0.09}$	$\textbf{0.10} \pm \textbf{0.02} \pm \textbf{0.02}$

The issue of color octet versus color singlet remains unresolved. The ball is back in the theorist's court.

Suggestion to Fleming, et al., that they apply same softening mechanism they used for continuum production.

More experimentation suggested: Perhaps search for $D\bar{D}$ in association with charmonium, in e^+e^- and at CDF/D0.

<u>Summary</u>

- Upsilon Spectroscopy revitalized after ~20 years!
- Vastly increased data sample + CLEO III detector!
- Precision scans, $B(\mu\mu)$, $\Gamma(tot)$ of $\Upsilon(1S,2S,3S)$
- Improved precision in dipion transitions
- First observation of internal ω transition
- First observation of the 1 D (L=2) state
- Precision measurement of E1 photon transitions
- Meaningful upper limits on hindered M1 transitions
- Precision measurements of Y(1S) decay to (cc)
- Generated considerable theoretical interest:
 potential models, LQCD, color octet/color singlet

...and, by the way, we also do Charmonium! Join the QWG! (meets next week in Beijing!) Backup slides

News on the $Q\bar{Q}$ Spin-Singlets

- 41 -

Production of $Q\bar{Q}$ Spin-Singlets:

... as well as hadroproduction which is the most egalitarian!

QQ Spin-Singlets:

- bb (η_b 's and h_b): limits from CLEO in '03 ... no news
- h_c (¹P₁, 1⁺⁻): not yet (maybe that is news?)
- η_c (¹S₀, O⁻⁺): Ground state of charmonium
- Still only ~30% of decays known ... some updates
- New publ'd mass determinations ... no big shifts
- Seen by CLEO in $\psi' \rightarrow \gamma \eta_{c}$ (>8 σ) [LP03:hep-ph/0311243]
- See QWG Yellow Report for up-to-date information