CLEO CKM Results

Karl M. Ecklund Cornell University Vth Rencontres du Vietnam August 7, 2004

7 Aug 2004

CKM Measurements in Semileptonic B Decays

In naïve spectator picture analogous to µ decay

$$\Gamma(b \to u \ell v) = \frac{\Re(b \to u \ell v)}{\tau_b} \approx \frac{G_F^2 m_b^5}{192\pi^3} |V_{ub}|^2$$

Rate is proportional to $|V_{ckm}|^2$ Complication!

- Quarks are found in hadrons.
- ◇ QCD corrections are needed to extract weak decay physics.

Both perturbative and non-perturbative QCD corrections: Directly calculate or measure via symmetry-related processes Use many techniques and compare results to gain confidence in hadronic corrections.

7 Aug 2004

Recent CLEO CKM Measurements

- ✤ Exclusive |V_{ub}|
 - $B \rightarrow \pi \ell \nu; B \rightarrow \eta \ell \nu; B \rightarrow \rho \ell \nu; B \rightarrow \omega \ell \nu$

neutrino reconstruction PRD 68, 072003 (2003)

- * Inclusive IV_{ub}l
 - From lepton energy endpoint PRL 88, 231803 (2002)
 - With help from b \rightarrow s γ PRL 87, 251807 (2001)
- ✤ Exclusive |V_{cb}|
 - B → D* ℓ v PRL 89 081803 (2002) & PRD 67 032001 (2003)
- * Inclusive IV_{cb}l
 - Hadronic Mass spectrum with neutrino reconstruction
 - ◊ E_ℓ 1.5 GeV PRL 87 251808 (2001)
 - ◊ E_ℓ> 1.0 GeV hep-ex/0403052
 - Lepton spectrum

 - ♦ E_{ℓ} > 0.6 GeV using lepton tags hep-ex/0403053

I will focus solely on new inclusive $B \rightarrow X_c \ell v$ results

Heavy Quark Effective Theory

- * Semileptonic rate expressed as a double expansion in α_s and $1/m_b$
- Introduce expansion parameters as matrix elements of non-perturbative operators
 - Use "kinetic mass" formulation of Gambino & Uraltsev
 EPJ C 34, 181 (2004)

$$\Gamma(b \to c \ell \nu) = \frac{G_F^2 m_b^5 |V_{cb}|^2}{192\pi^3} \left[1 + P(\alpha_s, \mu, \frac{m_b}{m_c}) + N(m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3) \right]$$

: $m_c \Rightarrow c$ quark mass
 $O(1/m_b)$: $m_b \Rightarrow b$ quark mass ($\Leftrightarrow \overline{\Lambda}$)
 $O(1/m_b^2)$: $\mu_\pi^2 \Rightarrow$ Fermi momentum of b quark ($\Leftrightarrow \lambda_1$)
: $\mu_G^2 \Rightarrow$ Hyperfine splitting ($\Leftrightarrow \lambda_2$)
 $O(1/m_b^3)$: $\rho_D^3 \Rightarrow$ Darwin Term
: $\rho_{LS}^3 \Rightarrow$ Spin - orbit coupling

7 Aug 2004

Moments of Observable Spectra

* Moment of distribution defined in usual way:

eg., lepton energy moment: including experimental cuts

$$E_{\ell}^{(n)}(E_{cut}) = \frac{\int\limits_{E_{cut}} E_{\ell}^{n} \frac{d\Gamma}{dE_{\ell}} dE_{\ell}}{\int\limits_{E_{cut}} \frac{d\Gamma}{dE_{\ell}} dE_{\ell}}$$

 A commom set of HQET parameters appear in expressions for

- Lepton energy moments in $B \rightarrow X_c h$
- Hadronic mass-squared moments in $B \rightarrow X_c h$
- q^2 moments in $B \rightarrow X_c h$
- Photon energy moments in $B \rightarrow X_{s\gamma}$
- Semileptonic width
- Simultaneously fit these measurements to determine HQET parameters and extract IV_{cb}l from observed decay rate

The CLEO II Detector

- ♦ CESR symmetric e⁺e⁻
 collider
 - Energy near Y(4S)
- Most relevant features of detector:
 - Hermeticity of detector
 ⇔neutrino reconstruction
 - Excellent shower resolution
 of CsI calorimeter
 ⇔photons, electrons
 - Good charged particle resolution and *dE/dx* of drift chamber ⇔leptons

7 Aug 2004

Hadronic Mass and q² in B → X_c v

Hadronic Mass and q² in B → X_c v

- Selection criteria applied to suppress continuum and enhance neutrino reconstruction
- Fit differential decay rate in three dimensions:
 - 92
 - M_{χ}^{2}
 - $-\cos\theta_{WI}$

* Fit Components and models:

- $B \rightarrow Dlv$ HQET+measured FF's
- $B \rightarrow D^* | v$ HQET+measured FF's
- $B \rightarrow D^{**} |_{V}$ ISGW2
- $B \rightarrow (X_c)_{non-res} | v Goity-Roberts$
- $B \rightarrow X_u | v$ ISGW2+NR
- Secondary leptons CLEO MC
- Continuum and fakes data

Fit Components

Note: histograms normalized to same area

Hadronic Mass and q² in B -X_c v

* Fit projections

- Fit provides reasonable description of the data
- Branching fractions of individual modes are very model-dependent
 Inclusive differential decay rate much less model-dependent

Hadronic Mass and q² Moments

Moment	$E_\ell > 1.0~{ m GeV}$	$E_\ell > 1.5~{\rm GeV}$
$\langle M_X^2 - \overline{M}_D^2 angle ~({ m GeV}^2/c^4)$	$0.456 \pm 0.014 \pm 0.045 \pm 0.109$	$0.293 \pm 0.012 \pm 0.033 \pm 0.048$
$\langle (M_X^2 - \langle M_X^2 angle)^2 angle ~({ m GeV}^4/c^8)$	$1.266\pm0.065\pm0.222\pm0.631$	$0.629\pm0.031\pm0.088\pm0.113$
$\langle q^2 angle ~({ m GeV}^2)$	$4.892 \pm 0.015 \pm 0.094 \pm 0.100$	$5.287 \pm 0.020 \pm 0.073 \pm 0.095$
$\langle (q^2 - \langle q^2 angle)^2 angle ~({ m GeV}^4)$	$2.852 \pm 0.002 \pm 0.003 \pm 0.047$	$2.879 \pm 0.006 \pm 0.007 \pm 0.049$

hep-ex/0403052 to appear in PRD

- Results are consistent with previous CLEO measurements PRL 87 251808 (2001)
- Uncertainties and results comparable to BaBar measurements (statistics vs systematics)
- \$ q² moments expected to be somewhat complementary to M_X moments
 Only measured by CLEO

Lepton Energy Moments in B -X lv

Monte Carlo simulation of electron daughters from B decay

- ✤ Di-lepton event sample
- ✤ Use one lepton as the "tag":
 - p/>1.4 GeV/c, eor μ
 - ~97% of sample is <u>primary</u> $B \rightarrow X h$
 - Lepton charge tags flavor of parent B meson
- Look for signal electron in "tagged" events
 - p_e > 0.6 GeV/c
 - Correct for backgrounds and efficiencies
 - Use charge and kinematic correlations to separate the spectra from primary and secondary leptons
 - ♦ <u>Primary</u> leptons are the signal

Lepton Energy Moments in B -X lv

	Unmixed B ⁰		Mixed B ⁰	
Primary Events	$\ell^+ \leftarrow \overline{b}$	$b \rightarrow e^{-}$	$\ell^+ \leftarrow \bar{l}$	$\overline{p} \overline{b} \rightarrow e^+$
Opposite B Secondaries	$\ell^+ \leftarrow \overline{b}$	$b \rightarrow c \rightarrow e^+$	$\ell^+ \leftarrow \overline{b}$	$\overline{b} \rightarrow \overline{c} \rightarrow e^-$
Same B Secondaries	$\overline{b} \rightarrow \overline{c} \ell^+ \rightarrow e^-$			

Lepton Energy Moments in B -X V

	Unmixed B ⁰		Mixed B ⁰	
Primary Events	$\ell^{+} \leftarrow \overline{b}$	$b \rightarrow e^{-}$	$\ell^+ \leftarrow \bar{b}$	$\overline{b} \rightarrow e^+$
Opposite B Secondaries	$\ell^+ \leftarrow \overline{b}$	$b \rightarrow c \rightarrow e^+$	$\ell^+ \leftarrow \overline{b}$	$\overline{b} \rightarrow \overline{c} \rightarrow e^{-}$
Same B Secondaries			- 0+ -	
		$D \to C$	$C\ell \rightarrow e$	

Easily vetoed with kinematic cut

7 Aug 2004

Lepton Energy Moments in B -X V

K M Ecklund -- CLEO CKM Results

7 Aug 2004

Lepton Energy Moments in B -X V

E_{min}	$\langle E_\ell angle ~~ ({f GeV})$	$\langle E_\ell^2 angle ~~ ({f GeV^2})$	$\langle E_\ell^2 - \langle E_\ell \rangle^2 angle$ (GeV ²)
0.6	$1.4261 \pm 0.0043 \pm 0.0105$	$2.1856 \pm 0.0112 \pm 0.0271$	$0.1526 \pm 0.0021 \pm 0.0031$
0.7	$1.4509 \pm 0.0035 \pm 0.0079$	$2.2419 \pm 0.0097 \pm 0.0216$	$0.1374 \pm 0.0015 \pm 0.0018$
0.8	$1.4779 \pm 0.0031 \pm 0.0061$	$2.3066 \pm 0.0090 \pm 0.0177$	$0.1228 \pm 0.0013 \pm 0.0012$
0.9	$1.5119 \pm 0.0028 \pm 0.0047$	$2.3923 \pm 0.0085 \pm 0.0144$	$0.1068 \pm 0.0011 \pm 0.0010$
1.0	$1.5483 \pm 0.0026 \pm 0.0039$	$2.4890 \pm 0.0082 \pm 0.0127$	$0.0918 \pm 0.0010 \pm 0.0011$
1.1	$1.5884 \pm 0.0024 \pm 0.0033$	$2.6003 \pm 0.0080 \pm 0.0111$	$0.0775 \pm 0.0009 \pm 0.0012$
1.2	$1.6315 \pm 0.0023 \pm 0.0031$	$2.7259 \pm 0.0078 \pm 0.0109$	$0.0642 \pm 0.0009 \pm 0.0012$
1.3	$1.6794 \pm 0.0022 \pm 0.0029$	$2.8720 \pm 0.0078 \pm 0.0106$	$0.0516 \pm 0.0008 \pm 0.0011$
1.4	$1.7256 \pm 0.0021 \pm 0.0030$	$3.0192 \pm 0.0079 \pm 0.0112$	$0.0413 \pm 0.0008 \pm 0.0010$
1.5	$1.7792 \pm 0.0021 \pm 0.0027$	$3.1972 \pm 0.0081 \pm 0.0107$	$0.0316 \pm 0.0008 \pm 0.0010$

hep-ex/0403053 to appear in PRD

Correct for

- EW radiation (FSR and detector bremsstrahlung)
- B boost
- Results consistent with previous CLEO measurements
- Systematics-limited --- Uncertainty on moments comparable to BaBar
- Integrate measured spectrum

$BR(B \to Xev) = (10.91 \pm 0.09 \pm 0.24)\%$

7 Aug 2004

Photon Energy Moments in $B \rightarrow X_s \gamma$

★ b→sγ measurement
 is key to extracting
 HQET parameters

- Sensitive to mb

♦ 2-body decay:

 $\left\langle E_{\gamma}\right\rangle \approx \frac{m_b}{2}$

- Independent of m_c
- New Physics in loop would not change spectrum

PRL 87, 251807 (2001) hep-ex/0108032 = Data = Spectator Model = Specta

 $\left\langle E_{\gamma} \right\rangle = 2.346 \pm 0.032 \pm 0.011 \text{ GeV}$ $\left\langle E_{\gamma}^{2} \right\rangle - \left\langle E_{\gamma} \right\rangle^{2} = 0.0226 \pm 0.0066 \pm 0.0020 \text{ GeV}^{2}$

Combined Fit to Determine IV_{cb}

Work in progress: Alex Smith (UMN) @ Beach 2004 Measurements included in fit:

- 1st and 2nd photon energy moments : E_{γ} > 2.0 GeV
- 1^{st} and 2^{nd} lepton energy moments : $E_e > 0.7, 1.2, 1.5 \text{ GeV}$
- 1^{st} and 2^{nd} hadronic mass moments : $E_e > 1.0$, 1.5 GeV
- $-1^{st} q^2$ moment : E_e > 1.0, 1.5 GeV
- Chi-squared fit including full correlation matrix of measurements
- Uses Ø(1/m³) formulation and code from Gambino and Uraltsev [EPJ C 34, 181 (2004) hep-ph/0401063]
 - Includes perturbative corrections to account for lepton/photon energy cuts
- Will also use approach of Bauer, Ligeti, *et al* before finalizing results [PRD 67 054012 (2003) hep-ph/0210027]

Combined Fit to Determine |V_{cb}|

Constraints from Lepton Energy

Constraints from Photon Energy

K M Ecklund -- CLEO CKM Results

Constraints from Hadronic Mass

Constraint from q^2

Combined Fit to Determine /V_{cb}/

- Only CLEO has measured <u>photon energy</u>, <u>q²</u>, hadronic mass, and lepton energy in a single experiment
 - A solution consistent with all measurements is found
 - Without $B \rightarrow X_{s\gamma}$, m_{b} and m_{c} almost completely correlated in fit
 - Most of the sensitivity to m_b comes from $B \rightarrow X_s \gamma$ measurement
 - ♦ First moment ⇔ mean photon energy ⇔ $m_b/2$ (approx.)
 - Other measurements primarily constrain m_b-Cm_c, C~0.6 (next slide illustrates)
 - $-q^2$ moment gives some complementary information
 - ♦ Nearly independent of μ_{π}^{2}

Combined Fit to Determine $|V_{cb}|$

Combined Fit to Determine IV_{cb}

$$|V_{cb}| = (42.4 \pm 0.8) \times 10^{-3}$$

N.B. Only expt. uncertainty

- Measurement of $|V_{cb}|$ and HQET parameters, including $m_b(\mu)$, $m_c(\mu)$, $\mu_{\pi}^2(\mu)$ at μ =1 GeV
- Expect to reduce experimental errors significantly with additional measurements
- Theory errors under study and not shown or included in fit
 - Expected to be >= experimental errors

Preliminary

$$m_b = 4.564^{+0.073}_{-0.074} \text{ GeV/}c^2$$

$$m_c = 1.16^{+0.10}_{-0.11} \text{ GeV/}c^2$$

$$\mu_{\pi}^2 = 0.483^{+0.050}_{-0.054} \text{ GeV}^2$$

$$\mu_G^2 = 0.10^{+0.083}_{-0.081} \text{ GeV}^2$$

$$\tilde{\rho}_D^3 = 0.091^{+0.026}_{-0.029} \text{ GeV}^3$$

$$\rho_{LS}^3 = 0.05 \pm 0.17 \text{ GeV}^3$$

Summary and Outlook

- Potential to significantly improve measurement of | V_{cb}| or test framework of heavy quark expansion
 - Experimental errors expected to be less than 2%
 - Theoretical errors expected to be comparable to expt. errors
 - Theoretical models will benefit from experimental constraints on higher order parameters
- * Many improvements to analysis in progress:
 - 3rd lepton energy moments
 - Include more 1st and 2nd lepton energy moments
 - 2nd q² moments Complementary sensitivity to parameters
 - Improved $B \rightarrow X_{s\gamma}$ moments: Critical constraint on m_b
 - Include theoretical uncertainties in fit
- <u>CLEO has measured many different moments in a single experiment</u>
 - Complementary to and of comparable precision to public BaBar measurements

Supplementary Slides

Variation with Energy Cuts

Variation with Energy Cuts

7 Aug 2004

Combined Fit Pulls

7 Aug 2004