

"Heavy and Light": Hadron Spectroscopy and Strong Interaction Dynamics from CLEO III and CLEO-c

Jim Napolitano, Rensselaer Polytechnic Institute for the CLEO Collaboration

CLEO III: ... 2002

CLEO-c: 2003...

Topics Covered in this Talk New (and Developing) Results

- Color Singlet vs Octet in $\Upsilon(1S) \rightarrow J/\psi + X$
- Branching Ratios for $\Upsilon(nS) \rightarrow \mu^+ \mu^-$
- Decays of the $\psi(2S)$
- Strong Physics from Weak Decays of D⁺,D⁰
- Measuring the Scalar Meson Mass Matrix

There is a <u>lot</u> that I'm leaving out!!

Color singlet mechanism predicts a softer J/ψ momentum spectrum because of additional charmed particles

Note: J/Ψ Production mechanism important for RHIC physics (See M. Leitch talk yesterday, Session D.)

Result

Mechanism is still not understood!

Find branching ratio ($6.4\pm0.4\pm0.6$)×10⁻⁴ consistent with either color singlet or octet

CLEO plans to search for open charm in these decays.

Branching Ratios for $\Upsilon(nS) \rightarrow \mu^+ \mu^$ hep-ex/0409027 (Submitted to Phys.Rev.Lett.) The total widths Γ_{tot} of the narrow upsilon resonances are too small to measure directly.

We instead use two separate measurements (and lepton universality) to extract $\Gamma_{tot} = \Gamma_{ee} / B_{uu}$:

- Branching ratios $B_{\mu\mu}$ from $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ New results presented here
- Γ_{ee} from cross section for $e^+e^- \rightarrow \Upsilon(nS) \rightarrow hadrons$ Analysis in progress

Our goal is to match the precision of LQCD predictions!

Results

Branching ratios (%):

Decays of the $\psi(2S)$

Various Measurements Just Completed or In Progress

- Inclusive Photon Spectrum hep-ex/0408133 (Submitted to Phys.Rev.Lett.)
- ★ ψ(2S)→ Vector + Pseudoscalar hep-ex/0407028 (Submitted to Phys.Rev.Lett.)
- Multibody Decays hep-ex/0408084 (Preliminary)
- Search for the h

Several analyses (inclusive and exclusive) in progress

Strong Physics from Weak Decays of D⁰,D⁺ Three Pieces of Physics:

I) Three body decays of D mesons

Evidence (or not) for low mass scalar mesons

2) Form Factors in $D^0 \rightarrow \{K^-, \pi^-\} e^+ \nu_e$

CLEO III: hep-ex/0407035 (Submitted to Phys.Rev.Lett.) CLEO-c: hep-ex/0408077 (Preliminary)

3) D⁺ Decay Constant in D⁺ $\rightarrow \mu^+ \nu_{\mu}$ CLEO-c: hep-ex/0408071 (*Preliminary*)

I) Three body decays of D mesons Example: $\kappa \rightarrow K^{-}\pi^{+}$ in D⁺ $\rightarrow K^{-}\pi^{+}\pi^{+}$?? Fermilab E79I CLEO-c

2) Form Factors in $D^0 \rightarrow \{K^-, \pi^-\} e^+ \nu_e$

Various techniques (including Lattice QCD) used to calculate the form factor as a function of q^2 .

CLEO-III: Use "continuum" inclusive D^0 production CLEO-c: Use "tagged" exclusive D^0 production

Note: $V_{cs} \gg V_{cd}$ so $\Gamma(D^0 \rightarrow K^- e^+ \nu_e) \gg \Gamma(D^0 \rightarrow \pi^- e^+ \nu_e)$

 \blacksquare The π 's have a potentially large background from K's!

Cleaner Analysis in CLEO-c

Preliminary Results CLEO-c $D^0 \rightarrow \{K^-, \pi^-\}e^+\nu_e$ Uncorrected Spectra

19

3) D⁺ Decay Constant in D⁺ $\rightarrow \mu^+ \nu_{\mu}$ $D^+ \begin{cases} C & W^+ & \ell^+ \\ - & W^- & \ell^- \end{cases}$

f_D+ can be calculated in Lattice QCD and in models. However, $\mathcal{B}(D^+ \rightarrow \mu^+ \nu_{\mu}) \sim 10^{-4}$ is small. Therefore, backgrounds can be a severe problem. Measurement is very well suited to CLEO-c!

Example: Data from $\psi(3770) \rightarrow D^+D^-$

Preliminary Results (CLEO-c $D^+ \rightarrow \mu^+ \nu_{\mu}$)

Background estimate:

Mode \mathcal{B} (%)# of events $\pi^+\pi^o$ 0.13 ± 0.02 0.31 ± 0.04 $K^o\pi^+$ 2.77 ± 0.18 0.06 ± 0.05 $\tau^+\nu$ $3.2\times\mu^+\nu$ 0.36 ± 0.08 $\pi^o\mu^+\nu$ 0.31 ± 0.15 negligible

Find eight events with an estimated backround of one

 $\mathcal{B} = (3.5 \pm 1.4 \pm 0.6) \times 10^{-4}$

f_D+=(201±41±17) MeV Consistent with LQCD

Plenty more data to come!

Measuring the Scalar Meson Mass Matrix Establishing the lightest glueball using CLEO-c

QCD predicts three light isoscalar J^{PC}=0⁺⁺ mesons: $\frac{1}{\sqrt{2}} \left[u\bar{u} + d\bar{d} \right] \qquad s\bar{s} \qquad \text{glueball}$

> Three states are observed in nature: $f_0(1370)$ $f_0(1500)$ $f_0(1710)$

How are these states mixed?

The answer should give us insight into hadron dynamics

Mixing is described by a mass matrix

Lattice QCD calculations of M_g are well known. What are the prospects for calculating other matrix elements, in particular the off-diagonal ones? See Lee and Weingarten, Phys.Rev. D61(2000)014015 Plans for CLEO-c: J/ ψ Radiative Decay

Populate states using $J/\psi \rightarrow \gamma f_0$

Measure decay rates for $f_0 \rightarrow \gamma V$

See Close, Donnachie, Kalashnikova, Phys.Rev.D67(2003)074031

Radiative Decay Widths in keV							Γ_{Tot}
	$f_0 \to \gamma \rho(770)$			$f_0 \to \gamma \phi(1020)$			MeV
State	L	\mathbf{M}	Η	L	М	Η	
$f_0(1370)$	443	1121	1540	8	9	32	~ 300
$f_0(1500)$	2519	1458	476	9	60	454	109
$f_0(1710)$	42	94	705	800	718	78	125

Goal for CLEO-c: $10^9 J/\psi$

Conclusions

- CLEO is enjoying life after B physics, with much of our research program aimed at hadronic spectroscopy and dynamics.
- Many new results are out now, based on our first low energy data sets.
- Much more data to come, to increase our statistics and to explore new ground.

Thank You!