Heavy Quarkonia (cc, bb) - Results from CLEO -

Kamal K. Seth

Northwestern University

LATTICE 2004 Fermilab, June 21 – 25, 2004

LATTICE 2004

Introduction

- Heavy quarkonia (cc charmonium, bb bottomonium) provide the best means of testing QCD, both
 - the validity of perturbative QCD and potential models, and
 - lattice QCD calculations.
- Bottomonium (bb) is better then charmonium (cc), both because it has smaller relativistic problems (<v²/c²> ≈0.1 versus ≈0.2) and smaller coupling constant (α≈0.2 versus ≈0.35), but much less high precision spectroscopic information is available for bottomonium.
- No bb singlet states are known, and very few hadronic and radiative decays are known. Nevertheless, progress is being made through recently taken $\Upsilon(nS)$ data with CLEO III.
- With the beginning of the CLEO-c program, interesting new results are being produced in the charmonium region.

A Text Book Picture

LATTICE 2004

Kamal K. Seth

Scope of Talk

- New in **Upsilon Spectroscopy**
 - $-\Upsilon(1^{3}D_{2})$
 - $\Upsilon(nS) \rightarrow \mu^+ \mu^-$
 - $\Upsilon(1S) \rightarrow J/\Psi + X$
 - hadronic transitions from $\Upsilon(3S)$

• New in **Charmonium Spectroscopy**

- $\gamma\gamma \rightarrow \eta_c/(2^1S_0)$
- Ψ ′(2S) →hadrons
- radiative transitions from $\Psi'(2S)$
- $\gamma\gamma \rightarrow X(3872)$, ISR $\rightarrow X(3872)$

CLEO (e⁺e⁻) Data Sets

E _{cm} (GeV)	State	$#events(10^6)$	Experiment
9.46 10.02 10.36	Υ(1S) Υ(1S) Υ(2S) Υ(2S) Υ(3S) Υ(3S)	2 20 0.5 10 0.5 5	CLEO II CLEO III CLEO II CLEO III CLEO II CLEO III
3.69	Ψ/(2S)	3	CLEO III CLEOc

First Observation of New $\Upsilon(1D)$ State of Bottomonium

 $\Upsilon(1D)$ state was observed in the following 4 photon cascade:

• Cascade assignment $\chi_1(2^3P_1) \rightarrow 1^3D_2 \rightarrow \chi_1(1^3P_1) \rightarrow \Upsilon(1S)$ and the measured product branching ratio are consistent with the predictions of Godfrey and Rosner.

Measurement of the $B[\Upsilon(nS) \rightarrow \mu^+\mu^-]$

preliminary

- The important parameters of $\Upsilon(2S)$ and $\Upsilon(3S)$ resonances leptonic widths, Γ_{ee} and total widths, Γ are not well established.
- Measurement of $\Upsilon(nS)$ decay to muon pairs relative to hadrons near resonance peaks gives:

$$\overline{B}_{\mathbf{m}\mathbf{m}} = \frac{\Gamma_{\mathbf{m}\mathbf{m}}}{\Gamma_{had}} = \frac{N(\mathbf{Y} \to \mathbf{m}^+ \mathbf{m}^-) / \mathbf{e}_{\mathbf{m}\mathbf{m}}}{N(\mathbf{Y} \to hadrons) / \mathbf{e}_{had}}$$

• Assuming lepton universality,

$$B_{\rm nm} = \frac{\Gamma_{\rm nm}}{\Gamma} = \frac{\overline{B}_{\rm nm}}{1 + 3\overline{B}_{\rm nm}}$$

• Analysis of CLEO III resonance scans (in progress) will provide separate measurements of Γ_{ee} and therefore lead to precision measurements of $\Gamma = \Gamma_{ee}/B_{\mu\mu}$.

Measurement of the $B[\Upsilon(nS) \rightarrow \mu^+\mu^-]$

preliminary

	Ύ(1S)	Υ(2S)	Υ(3S)
$B_{\mu\mu}(\%)$ CLEO	${\bf 2.53 \pm 0.02 \pm 0.05}$	${\bf 2.11 \pm 0.03 \pm 0.05}$	$\textbf{2.44} \pm \textbf{0.07} \pm \textbf{0.05}$
$B_{\mu\mu}(\%) PDG$	$\textbf{2.48} \pm \textbf{0.06}$	$\boldsymbol{1.31\pm0.21}$	$\boldsymbol{1.81 \pm 0.17}$

LATTICE 2004

$\Upsilon(1S)$ Decays to Charmonia

- $\Upsilon(1S)$ decays to J/Ψ , Ψ' , and $\chi_{c1,c2}$ have been measured.
- The decay $\Upsilon(1S) \rightarrow J/\Psi X$, $J/\Psi \rightarrow e^+e^-, \mu^+\mu^$ leads to

B_{µµ}[Υ(1S) → J/Ψ+X] = (**6.4 ± 0.5**) x 10⁻⁴

 B_{ee} [Υ(1S) → J/Ψ+X] = (5.7 ± 0.4) x 10⁻⁴

 J/Ψ momentum distribution is found to be in clear disagreement with the prediction based on the <u>color octet</u> model (Cheung et al., PRD 54(1996)929), and in qualitative agreement with <u>color singlet</u> model.

preliminary

LATTICE 2004

First Observation of $\chi_b^{\prime}(2P) \rightarrow \omega \Upsilon(1S)$

• For the first time in a bottomonium system a hadronic transition, other than $\Upsilon(nS) \rightarrow \Upsilon(n'S)\pi\pi$ has been observed, with

B[
$$\chi_{b1}$$
(2P)→ωΥ(1S)] = (**1.63 ± 0.38**) %

B[χ_{b2} (2P)→ωΥ(1S)] = (**1.10 ± 0.34**) %

• The decays $\Upsilon(3S) \rightarrow \pi^0 \pi^0 \Upsilon(1S, 2S)$ are found to have dipion mass distributions in agreement with those observed for corresponding $\pi^+\pi^-$ dipion decays.

 $B[\Upsilon(3S) \rightarrow \pi^0 \pi^0 \Upsilon(2S)] = 2.02 \pm 0.18 \pm 0.38 \quad (\%)$

$$B[\Upsilon(3S) \rightarrow \pi^0 \pi^0 \Upsilon(1S)] = 1.88 \pm 0.08 \pm 0.31 \ (\%)$$

 $M_{\pi\pi}$ (GeV/c²)

Dipion Decays of $\Upsilon(3S)$

LATTICE 2004

Discovery of $\eta_c^{\prime}(2S)$

- Belle experiment observed $\eta_c^{\prime}(2S)$ in two different channels:

 $B^{+-} \rightarrow K^{+-}(\eta_c^{\ /}) \rightarrow K^{+-}(K_s K^{+-} \pi^{-+}) \qquad M(\eta_c^{\ /}) = 3654 \pm 6 \pm 8 \text{ (MeV)} \\ e^+ e^- \rightarrow J/\Psi \eta_c^{\ /} \qquad M(\eta_c^{\ /}) = 3622 \pm 12 \text{ (MeV)}$

CLEO and BaBar have observed $\eta_c^{\prime}(2S)$ in two photon fusion

Discovery of $\eta_c^{\prime}(2S)$

• The measured $\Delta M(2S)$ is much smaller than most of the theoretical predictions . It should lead to a new insight into coupled channel effects and spin-spin contribution of the confinement part of $q\bar{q}$ potential.

LATTICE 2004

Two-body Hadronic Decays of $\Psi'(2S)$

preliminary

• PQCD expectation [assuming $\alpha_s(\Psi'(2S)) = \alpha_s(J/\Psi)$]

$$Q_{LH} \approx \frac{B[\Psi'(2S) \rightarrow LH]}{B(J/\Psi \rightarrow LH)} \approx \frac{B[\Psi'(2S) \rightarrow e^+e^-]}{B(J/\Psi \rightarrow e^+e^-)} \approx (13 \pm 1)\%$$

(LH- Light Hadrons)

As a matter of fact $Q(\Sigma LH)_{expt} \approx (17 \pm 3)$ %. However, for individual hadronic decays this "13% rule" is found to be badly broken ($Q_{LH} \approx 0.2\% - 20\%$)

- BES measured a large number of hadronic decays. CLEO has now added many more, and found many more examples of strong violation of this rule.
- Many possible theoretical explanations have been offered, but there is no consensus.

Radiative Transitions from $\Psi'(2S)$

preliminary

500

1000

- general agreement with PDG branching ratios.
- M1 transition to $\eta_c(1S)$, observed by CBAL is confirmed.
- M1 transition to $\eta_c'(2S)$, claimed by CBAL is not observed.

Branching ratios in %

50

100

	$\Psi'(2S) \rightarrow \gamma \chi_2$	$\Psi'(2S) \rightarrow \gamma \chi_1$	$\Psi'(2S) \rightarrow \gamma \chi_0$	$\Psi'(2S) \rightarrow \gamma \eta_c$
CLEO	9.75±0.14±1.17	9.64±0.11±0.69	9.83±0.13±0.87	0.278±0.033±0.049
PDG	7.8 ± 0.8	8.7 ± 0.8	9.3 ± 0.8	0.28 ± 0.06

LATTICE 2004

With ~3 million Ψ' decays precision determination of branching ratios for the following decay channels are being determined from two photon cascades:

B($\chi_{cJ} \rightarrow \gamma J/\Psi$), B($\Psi' \rightarrow \eta J/\Psi$), B[$\Psi'(2S) \rightarrow \pi^0 J/\Psi$)]

LATTICE 2004

New Narrow State X(3872)

• Belle Collaboration observed a narrow state in:

B^{+−} → K^{+−}X(3872), X (3872) → π⁺π[−]J/Ψ, J/Ψ → l⁺l[−] M = **3872.0 ± 0.6 ± 0.5** (MeV), Γ < **2.3** MeV Belle (2003) M = **3873.4 ± 1.4** (MeV), Γ < **3.1 ± 0.2** (MeV) BaBar (2004)

• CDF and D0 Collaborations confirmed in:

 $p\bar{p} \rightarrow X(3872) + X, X(3872) \rightarrow \pi^+\pi^-J/\Psi, J/\Psi \rightarrow \mu^+\mu^-$

- $M = 3871.3 \pm 0.7 \pm 0.4 \text{ (MeV)}, \quad \Gamma < 4.9 \pm 0.7 \text{ (MeV)} \quad CDF \quad (2003)$
- $M = 3871.8 \pm 3.1 \pm 3.0 \text{ (MeV)}, \quad \Gamma < 17 \pm 3 \quad \text{(MeV)} \quad D0 \quad (2004)$
- Identification of the quantum numbers is important to understand the structure:
 - a conventional charmonium state ? (Eichten, Lane, Quigg), (Barnes et al) many quantum numbers are possible
 - a $D^0 \overline{D}^{*0}$ molecule ? (<u>Tornqvist</u> et al)
 - $J^{PC} = 1^{++}$ (S-wave), 0^{-+} (P-wave)
 - a charmonium hybrid state ? (<u>Close</u> et al)
- X(3872) decays to various charmonium states and $D^0\overline{D}^0$ states have been searched and upper limits have been set.

New Narrow State X(3872)

- CLEO searched for X(3872) state in:

 untagged γγ fusion: +C parity, J^{PC} = 0 ++, 0 -+, 2 ++, 2 -+, ...
 ISR production: J^{PC} = 1⁻⁻
 with ~15 fb⁻¹ of CLEO III data.

 exclusive channels X → π⁺π⁻J/Ψ, J/Ψ→1⁺1⁻
 were analyzed.
- no signal was found.
- following upper limits were set:

Untagged $\gamma\gamma$ fusion (systematic errors are included):

 $(2J+1)\Gamma_{\gamma\gamma}B(X \to \pi^+\pi^- J/\Psi) < 16.7 \text{ eV} (90\% \text{ CL})$

ISR production (systematic errors are included):

 $\Gamma_{ee}B(X \rightarrow \pi^+\pi^- J/\Psi) < 6.8 \text{ eV} (90\% \text{ CL})$

LATTICE 2004

SUMMARY

- Heavy quarkonium spectroscopy continues to produce precision results. With CLEOc, look forward to ...
 - observation of charmonium ${}^{1}P_{1}(h_{c})$ state
 - search for charmonium 2P and 1D states
 - improved understanding of D decays of $\Psi^{\prime\prime}(3770)$, $\Psi^{\prime\prime\prime}(4040)$...
 - glueballs and other exotics.
- Hopefully, LATTICE can use these precision results for calibration.

We are promised this for bottomonium, and look forward to similar success with charmonium.