Evidence for B_s in $\Upsilon(5S)$ at CLEO and $\Upsilon(4S)$ Studies at BaBar

Jianchun Wang Syracuse University

ICHEP'04 August 16-22, 2004, Beijing

Υ(5S) Study at CLEO

- CLEO studies B_s in both inclusive and exclusive modes.
- Data was taken with the CLEO III detector.

A Brief Introduction of $\Upsilon(5S)$

- CLEO & CUSB observed Υ(5S) in 1985.
 M = 10.865±0.008 GeV
 Γ = 110±13 MeV
 σ(Υ(5S))~0.35 nb, ~1/10×σ(cont).
- The composition of the Υ(5S) needs to be investigated. In PDG only e⁺e⁻ mode is quoted.

- ♦ CUSB studied Doppler effect of photon in $B_{(s)}^* \rightarrow B_{(s)}^* \gamma$.
- CLEO studied: the shape of the lepton spectrum, inclusive particle yield and exclusive B_s reconstruction.
- With 116 pb⁻¹ data there is no strong conclusion on B_s production.

08/18/2004

Model Predictions

- The hadronic cross section in the Upsilon region is well described by the Unitarized Quark Model (UQM), which is a coupled channel model (ref: S. Ono *et al*, PRL55, 2938(1985)).
- ★ The UQM predicts that the B_s^(*)B_s^(*) production ~ 1/3 of the total Y(5S) cross section. And Y(5S) decays are dominated by B*B* and B_s*B_s*.
- ♦ Other models predict a smaller $\Upsilon(5S) \rightarrow B_s * \overline{B_s} * \text{ component.}$

The Inclusive Channel

D_s Production in $\Upsilon(4S)$ & $\Upsilon(5S)$ Decays

The systematic error is dominated by $B(D_s \rightarrow \phi \pi^+)$ and number of $\Upsilon(5S)$ events.

Evidence of B_s in $\Upsilon(5S)$ Decays

B_s decay modes are analogous to the corresponding B decay modes. A model estimate gives (ref: ICHEP04 ABS11-0778)

 $B(\overline{B}_{s}\rightarrow D_{s}X) = (92\pm 11)\%.$

Knowing D_s production rate in $\Upsilon(5S)$, B, and B_s decays

 $B(\Upsilon(5S) \rightarrow B_{s}^{(*)}\overline{B}_{s}^{(*)}) = (21 \pm 3 \pm 9)\%$

consistent with phenomenological predictions.

Preliminary

08/18/2004

Exclusive B_s Reconstruction

• The B reconstruction techniques used at $\Upsilon(4S)$ are employed to reconstruct B_s from $\Upsilon(5S)$: $M_{bc} = \sqrt{E_{beam}^2 - P_{candidate}^2}$, $\Delta E = E_{beam} - E_{candidate}$ • Three sources of B_s produce three distinct distributions. $\Upsilon(5S) \rightarrow B_s \overline{B_s}, B_s \overline{B_s^*}, B_s^* \overline{B_s^*} = B(B_s^* \rightarrow B_s \gamma) \sim 100\%$ 0.10 Events: 1432.4 Mass: 5.3700 ± 0.0001 (GeV/c²) 3.50 ± 0.10 (MeV) - Ecandidate (GeV) Width! 5 MeV/c²) Peak 2 MC Events: 1556.5 ± 40.0 Mass: 5.3952 ± 0.0001 (GeV/c²) Width: 4.28 ± 0.10 (MeV) Peak 3: Events: 1511.4 ± 39. 1 (2. Mass: 5.4200 ± 0.0001 (GeV/d2) 3.51 ± 0.08 (MeV) Width: Candidates , 8 ' ^{шерд}о.05[†] Ш -0.10 L 5.25 5.35 5.30 5.40 5.25 5.45 M_{bc} (B_s candidate) (GeV) 5.45 M_{hc} (B_s candidate) (GeV) 08/18/2004 Jianchun Wang 8

08/18/2004

Υ(4S) Studies at BaBar

- Three Υ(4S) scans and one Υ(3S) scan are used in the measurement of the Υ(4S) resonance parameters.
- ♦ 81.7 fb⁻¹ Υ (4S) data are used in the measurement of $B(\Upsilon$ (4S) \rightarrow B⁰ $\overline{B^0}$).

08/18/2004

Measurement of $\Upsilon(4S)$ Parameters

- The current mass and width of Υ(4S) are with large uncertainty. It can be improved.
- The Υ(4S) resonance parameters can be determined by measuring the energy dependence of the cross section σ_{bb} and fitting to a line-shape function.
 - > Relativistic Breit-Wigner function. $\Gamma_{ee}^{0}\Gamma_{tot}(s)$

$$\mathbf{s}_{0}(s) = 12\mathbf{p} \frac{\Gamma_{ee}^{0} \Gamma_{tot}(s)}{(s - M^{2})^{2} + M^{2} \Gamma_{tot}^{2}(s)}$$

- Radiation correction.
- > Beam energy spread correction.
- The Υ(3S) scan is used to measure energy spread and calibrate energy.
- Large sample of data around Y(4S) peak is used to determine the peak crosssection.

The $\Upsilon(4S)$ Parameters

(For details of BaBar measurement see: B. Aubert, et al., hep-ex/0405025)

	Mass (MeV)	Γ _{tot} (MeV)	Γ _{ee} (keV)
BaBar	10579.3 ± 0.4 ± 1.2	20.7 ± 1.6 ± 2.5	0.321 ± 0.017 ± 0.029
ARGUS			0.28 ± 0.05 ± 0.01
CUSB	(10577.4 ± 1.0)	(25 ± 2.5)	0.283 ± 0.037
CLEO	10580.0 ± 3.5	$20 \pm 2 \pm 4$	0.192 ± 0.007 ± 0.038
PDG	10580.0 ± 3.5	$20 \pm 2 \pm 4$	0.248 ± 0.031

Measurement of $B(\Upsilon(4S) \rightarrow B^0 \overline{B}^0)$

Status of $R^{+/0} \equiv f_{+-}/f_{00} \equiv B (\Upsilon(4S) \rightarrow B^+B^-) / B (\Upsilon(4S) \rightarrow B^0\overline{B^0})$:

- Theoretical predications range from 1.03 to 1.25.
- Current PDG value (1.029±0.054±0.045) consistent with unity.
- Precise measurement will re-normalize many B decay branching fractions, and contribute to our understanding of isospin violation.

• BaBar uses single and double tag $\overline{B}^0 \to D^{*+} l \overline{v}_l$ events to measure f_{00} .

$$N_{s} = 2N_{B\overline{B}}f_{00}\boldsymbol{e}_{s}B(\overline{B}^{0}\to D^{*+}l\overline{\nu}_{l}),$$

$$N_{d} = N_{B\overline{B}}f_{00}\boldsymbol{e}_{d}\left[B(\overline{B}^{0}\to D^{*+}l\overline{\nu}_{l})\right]^{2}.$$

$$f_{00} = \frac{N_{s}^{2}}{4N_{d}N_{B\overline{B}}}\times \frac{\boldsymbol{e}_{d}}{\boldsymbol{e}_{s}^{2}}$$

$$7$$

• Only slow π^+ (60MeV < P < 200MeV) and l^- (1.5GeV < P < 2.5 GeV) detected.

$$\begin{array}{cccc}
 & V_{l} & & \\
\hline B^{0} & & D^{\circ} & \\
\hline D^{*} & & D^{\circ} & \\
\hline D^{*} & & \\
\end{array} \quad M^{2} \equiv (E_{beam} - E_{D^{*}} - E_{l})^{2} - (\overrightarrow{P}_{D^{*}} + \overrightarrow{P}_{l})^{2}.
\end{array}$$

08/18/2004

Event Samples

- PDF of Signal, combinatorial and peaking BB bkg are determined from MC simulation. The continuum bkg are subtracted using continuum data.
- Double tag sample contains extra bkg from combinatorial and peaking BB in selecting the first one. These are subtracted using sideband.

The Measurement of f_{00}

Source	$M_{\rm s}^2$	M_{2}^{2}	
Combinatorial BB	558090 ± 760	1520 ± 40	
Peaking BB	68170 ± 260	300 ± 20	
Signal	786300 ± 2000	3560 ± 80	
Continuum	238500 ± 1300	160 ± 40	
M_1^2 -combinatorial		180 ± 20	
M_1^2 -peaking		60 ± 10	
χ²/d.o.f.	41/56	48/56	
Confidence level	93%	77%	

 $f_{00} = 0.486 \pm 0.010 \pm 0.009$

The measurement is independent on *B* (decay chain), reconstruction efficiency, τ_{B_+}/τ_{B0} , or assumption of isospin symmetry.

(ref: B. Aubert, et al., hep-ex/0408022)

08/18/2004

Summary

- ◆ CLEO studied B_s in both inclusive and exclusive modes. They found evidence for $B_{\zeta}^{(*)}\overline{B_{\zeta}}^{(*)}$ production at the $\Upsilon(5S)$, dominated by $B_{\zeta}^{*}\overline{B_{\zeta}}^{*}$ mode.
 - > $B(\Upsilon(4S) \rightarrow D_{s}X) = (22.3 \pm 0.7 \pm 5.7)\%$
 - > $B(\overline{B} \to D_s X)$ = (11.1±0.4±2.9)% > $B(\Upsilon(5S) \to D_s X)$ = (55.0±5.2±17.8)%

Preliminary

- $> B(\Upsilon(5S) \rightarrow D_S X)/B(\Upsilon(4S) \rightarrow D_S X) = 2.5 \pm 0.3 \pm 0.6$
- > $B(\Upsilon(5S) \rightarrow B_s(*)\overline{B_s}(*)) = (21\pm3\pm9)\%$, model dependent

• The BaBar had measured $\Upsilon(4S)$ parameters:

- > M = (10579.3±0.4±1.2) MeV,
- > $\Gamma_{\text{tot}} = (20.7 \pm 1.6 \pm 2.5) \text{ MeV},$
- > $\Gamma_{\rm ee}$ = (0.321±0.017±0.029) keV.

♦ The BaBar measured $B(\Upsilon(4S) \rightarrow B^0\overline{B^0}) = 0.486 \pm 0.010 \pm 0.009$.

Backup Slides

MC Expectation & Feynman Diagram

B_s Exclusive Modes

Υ(4S) Parameter Systematic Errors

TABLE I: Summary of systematic uncertainties

	$\delta \Gamma_{\rm tot}~({\rm MeV})$	$\delta \Gamma_{ee} ({\rm keV})$	$\delta B_{ee} \times 10^{5}$	$\delta M (\text{MeV}/c^2)$
model uncertainty	1.4	0.017	0.03	0.1
systematic bias by single data point	2.0	0.022	0.04	0.3
uncertainty of energy spread	0.5	0.0024	0.03	< 0.1
uncertainty of peak cross section	< 0.1	0.006	0.03	< 0.1
long term drift of energy scale	43	243	2	1.0
error on $M_{T(2S)}$		1.73	: s :	0.5
total error	2.5	0.029	0.07	1.2

Systematic Error for f_{00}

 $f_{00} = 0.486 \pm 0.010 \pm 0.009$

Source	$\delta(f_{00})$
\mathcal{M}_1^2 -combinatorial	0.0005
\mathcal{M}_1^2 -peaking	0.0005
Same charged events	0.0025
Peaking background	0.004
B-meson counting	0.0055
$\Upsilon(4S) ightarrow \mathrm{non-}B\overline{B}$	0.0025
Efficiency correlation	0.004
Monte Carlo statistics	0.002
Total	0.009