Heavy Quarkonia

Zaza Metreveli Northwestern University

"Heavy Quarks and Leptons 2004" Workshop San Juan, Puerto Rico, June 1-5, 2004

Introduction

- heavy quarkonia bound states of charm and bottom quarks. They are strong interaction analogs of positronium.
- because charm and bottom quarks have large masses (~1.5 and ~4.5 GeV)
 - velocities of quarks in hadrons are nonrelativistic
 - strong coupling constant α_s (~0.3 for $c\overline{c}$ and ~0.2 for $b\overline{b}$) is small
- therefore heavy quarkonia spectroscopy is a good testing ground for the theories of strong interactions:
 - QCD in both perturbative and non-perturbative regimes
 - QCD inspired purely phenomenological potential models
 - NRQCD and Lattice QCD

How Quarkonium States are Produced?

double charm production

Charmonium spectroscopy

Bottomonium spectroscopy

HQL2004

Modern datasets with highest statistics (e⁺e⁻ experiments)

E _{cm} (GeV)	State	$#events(10^6)$	Experiment
	J/Ψ	8	BES
3.10	J/Ψ	58	BES II
	Ψ(2S)	4	BES
3.69	Ψ(2S)	14	BES II
	Ψ(2S)	3	CLEOc
9.46	Y(1S)	2	CLEO II
	Y(1S)	20	CLEO III
10.02	Y(2S)	0.5	CLEO II
	Y(2S)	10	CLEO III
10.36	Y(3S)	0.5	CLEO II
	Y(3S)	5	CLEO III

Scope of Talk

- Upsilon Spectroscopy
 - $Y(1^{3}D_{2})$
 - Y(nS) $\rightarrow \mu^+\mu^-$
 - $Y(1S) \rightarrow J/\Psi + X$
 - radiative and hadronic transitions from Y(3S)
- spectroscopy of charmonium region
 - $\eta_c(2^1S_0)$
 - -Ψ(2S) →hh
 - radiative transitions from $\Psi(2S)$
 - X(3872)

First Observation of New Y(1D) State of Bottomonium

Collaboration

10100

10120

10140 10160 m(1D) (MeV)

Y(1D) state was observed in the following photon cascade:

 $Y(3S) \rightarrow \gamma \chi(2P) \rightarrow \gamma Y(1D) \rightarrow \gamma \chi(1P) \rightarrow \gamma Y(1S) \rightarrow e^+e^-, \ \mu^+\mu^-$

i.e. 4 photons and 2 leptons in final state.
- theoretical prediction of the BR by <u>Godfrey and Rosner is 4x10⁻⁵</u>

34.5 + -6.4 signal events were observed. Significance of the signal = 10.2σ

M[Y(1D)] = 10161.1 + -0.6 + -1.6 (MeV)

 $B(\gamma\gamma\gamma\gamma l^+l^-)_{Y(1D)} = (2.6 + -0.5 + -0.5)x10^{-5}$

Consistent with J = 2 assignment $Y(1^{3}D_{2})$

Mass is consistent with predictions from potential models and Lattice QCD calculations.

1010

CLEO

HQL2004

Measurement of the $B[Y(nS) \rightarrow mm]$

- leptonic (Γ_{11}) and total widths (Γ) of Y(n³S₁) resonances are not very well established (4-16% relative errors)
- Γ and Γ_{ee} enter many PQCD calculations
- precise measurement of B(1+1-) allows to determine Γ of Y(nS) precisely (also need precise Γ_{ee} measurement, expect from CLEO soon):

 $\Gamma = \Gamma_{ll} / B_{ll} = \Gamma_{ee} / B_{\mu\mu}$ (assuming lepton universality)

- measure decay rate to muon pairs relative to hadronic decay rate:

$$\overline{B}_{mm} = \frac{\Gamma_{mm}}{\Gamma_{had}} = \frac{N(Y \rightarrow m^+ m^-)/e_{mm}}{N(Y \rightarrow hadrons)/e_{had}}$$
$$B_{mm} = \frac{\Gamma_{mm}}{\Gamma} = \frac{\Gamma_{mm}}{\Gamma_{had}(1+3\Gamma_{mm}/\Gamma_{had})} = \frac{\overline{B}_{mm}}{1+3\overline{B}_{mm}}$$

HQL2004

Measurement of the $B[Y(nS) \rightarrow mm]$

CLEO preliminary

- Y(1S) branching fraction agrees with the PDG average. Significant discrepancy observed in case of Y(2S) and Y(3S).
- The new branching fractions would result in a significantly lower total decay width for Y(2S) and Y(3S).

HQL2004

Production of J/Ψ in Y(1S) Decays

- 10 years ago CDF experiment reported anomalously high rates of J/Ψ and $\Psi(2S)$ production in pp collisions.
- In Y(1S) data J/Ψ can be produced from:
- $Y(1S) \rightarrow ggg, Y(1S) \rightarrow \gamma^* \rightarrow qq$
- continuum production $e^+e^- \rightarrow J/\Psi + X$

 B_{ee} [Y(1S) → J/Ψ+X] = (5.7 + − 0.4) x 10⁻⁴

- color octet model (<u>Braaten and Fleming</u>) predictions of BR are in agreement with above preliminary measurements.

Continuum subtracted J/ Ψ momentum spectra -

- no indication of peaking at large x values, as predicted by color octet model.

HQL2004

Radiative Transitions from Y(nS)

- $\eta_b(1S)$, $\eta_b(2S)$ states were searched in Y(nS) M1 transitions.
- no significant signals were found.
- upper limits on the branching fractions as a function of E_{γ} were set.
- E1 Y(3³S₁) $\rightarrow \gamma \chi_b(1^3 P_J)$ and $\chi_b(2, 1^3 P_0) \rightarrow \gamma Y(2, 1^3 S_1)$ transitions were observed.
- precision measurements are in progress.

 $Y(3S) \rightarrow \pi^0 \pi^0 Y(1S)$ and $Y(3S) \rightarrow \pi^0 \pi^0 Y(2S)$

- branching fractions were measured (preliminary):

 $B[Y(3S) \rightarrow \pi^0 \pi^0 Y(2S)] = 2.02 + -0.18 + -0.38 (\%)$

 $B[Y(3S) \rightarrow \pi^0 \pi^0 Y(1S)] = 1.88 + -0.08 + -0.31 (\%)$

- $\pi^0 \pi^0$ effective mass spectrum from $Y(3S) \rightarrow \pi^0 \pi^0 Y(2S)$ has the shape consistent with several theoretical predictions.
- $\pi^0 \pi^0$ effective mass spectrum from $Y(3S) \rightarrow \pi^0 \pi^0 Y(1S)$ has "double humped" shape, also observed in the charged pion transitions.

Latest experimental results on $\eta_c(2S)$

- Belle experiment observed $\eta_c(2S)$ in two different channels:

Latest experimental results on $\eta_c(2S)$

Belle, BaBar, CLEO combined $\eta_c(2S)$ mass value:

 $M[\eta_c(2S)] = 3637.4 + - 4.4$ (MeV)

Hyperfine mass splitting

 $\Delta M(2S) = M[\Psi(2S)] - M[\eta_c(2S)] =$ = **48.6** + - **4.4** (MeV)

to be compared to theoretical predictions. $\Delta M(1S) = M[\Psi(1S)] - M[\eta_c(1S)] =$ = 117 + -2 (MeV)

 $\Delta M(2S)$ is smaller that most theoretical predictions and should lead to a new insight

into spin-spin contribution of the confinement part of qq potential.

 $\Gamma[\eta_c(1S)] = 24.8 + -3.4 + -3.5 \text{ (MeV)} CLEO PDG$ $\Gamma[\eta_c(1S)] = 34.3 + -2.3 + -0.9 \text{ (MeV)} BaBar \Gamma[\eta_c(1S)] = 16.0 + 3.6 - 3.2 \text{ (MeV)}$

HQL2004

Two-body Hadronic $\Psi(2S)$ Decays

- QCD expectation:

$$Q_h \approx \frac{B[\Psi(2S) \rightarrow H]}{B(J/\Psi \rightarrow H)} \approx \frac{B[\Psi(2S) \rightarrow e^+e^-]}{B(J/\Psi \rightarrow e^+e^-)} \approx (12.3 \pm 0.9)\%$$

- not taken into account α_s factor for J/ Ψ and $\Psi(2S)$
- not taken into account form factor energy dependence
- interference with continuum?

even with above modifications, agreement within factor two is expected.

- experimentally not justified for many channels. Called as "12% rule" violation, or " $\rho\pi$ " puzzle;
- many measurements are (were) not available, or poorly measured.

Two-body Hadronic $\Psi(2S)$ Decays

BES, CLEO preliminary

BES Collaboration

	channel $B[\Psi(2S) \rightarrow X](x10^{-4})$		Q _h (%)
	$K_{s}^{0}K_{L}^{0}$	1.82 + -0.04 + -0.13	28.8 + - 3.7
VT	ωf_2	2.05 + -0.56	4.8 + -1.5
	ρa ₂	2.55 + -0.87	2.3 + -1.1
	$K^*K_2^*(bar)$	1.86 + -0.54	2.8 + -1.3
	ϕf_2^{\prime}	0.44 + -0.16	3.6 + -1.5

- isospin violating modes $\omega\pi$ and $\rho\eta$ are not strongly suppressed with respect to 12% rule.
- VT decay modes also violate 12% rule.
- $\Psi(2S)$ decay in $K_s^0 K_L^0$ is enhanced by >4 σ relative to the 12% rule.

HQL2004

Radiative Transitions from $\Psi(2S)$

- good agreement with PDG branching ratios.
- M1 transition to $\eta_c(1S)$, observed by CBAL is confirmed.
- no indication of M1 transition to $\eta_c(2S)$, observed by CBAL ~20 years ago.

		$B[\Psi(2S) \rightarrow \gamma \chi_c(1P)]$	J)] in %	$B[\Psi(2S) \rightarrow \gamma \eta_c(1S)]$
	J=2 (E1 line)	J=1 (E1 line)	J=0 (E1 line)	J=0 (M1 line)
CLEO	9.75 + - 0.14 + - 1.17	9.64 + - 0.11 + - 0.69	9.83 + - 0.13 + - 0.87	0.278 + - 0.033 + - 0.049
PDG	7.8 + - 0.8	8.7 + - 0.8	9.3 + - 0.8	0.28 + -0.06

HQL2004

BES Collaboration

HQL2004

New Narrow State X(3872)

- Belle Collaboration observed a narrow state in:

 $B^{+-} \rightarrow K^{+-}X(3872), \quad X(3872) \rightarrow \pi^{+}\pi^{-}J/\Psi, \qquad J/\Psi \rightarrow l^{+}l^{-}$

M = 3872.0 + -0.6 + -0.5 (MeV), $\Gamma < 2.3$ MeV (90% CL).

- CDF and D0 Collaborations confirmed in:

p-pbar \rightarrow X(3872) + X, X(3872) $\rightarrow \pi^+\pi^-J/\Psi$, $J/\Psi \rightarrow \mu^+\mu^-$ M = 3871.3 + - 0.7 + - 0.4 (MeV) CDF Collaboration M = 3871.8 + - 3.1 + - 3.0 (MeV) D0 Collaboration

- identification of the quantum numbers is important to understand the structure:
 - a conventional charmonium state ? (Eichten, Lane, Quigg), (Barnes et al) many quantum numbers are possible
 - a D⁰-D^{*0}(bar) molecule ? (<u>Tornqvist</u> et al) $J^{PC} = 1^{++}$ (S-wave), 0^{-+} (P-wave)
 - a charmonium hybrid state ? (<u>Close</u> et al)
- X(3872) decays to $\chi_{c1}\gamma$ (if state is ${}^{3}D_{2}$), $\chi_{c2}\gamma$ (if state is ${}^{3}D_{3}$), J/ $\Psi\gamma$ (if state is χ_{cI}), D⁰D⁰ (if state is molecular) were searched. Only upper limits were set. HQL2004 Zaza Metreveli 19

New Narrow State X(3872)

- CLEO searched for X(3872) state in: - untagged $\gamma\gamma$ fusion: +C parity, J^{PC} = 0 ++, 0 -+, 2 ++, 2 -+, ... - ISR production: $J^{PC} = 1^{--}$ with ~15 fb⁻¹ of CLEO III data. **CLEO** PRELIMINARY - exclusive channels $X \rightarrow \pi^+\pi^- J/\Psi$, $J/\Psi \rightarrow l^+l^-$ 30 $J/\psi \rightarrow \mu^{\dagger}\mu^{\dagger}$ were analyzed. $J/\psi \rightarrow e^+e^-$ MeV/c²) - no signal was found. X(3872) - following upper limits were set: 2 Events / Untagged $\gamma\gamma$ fusion (systematic errors are included): 10 $(2J+1)\Gamma_{\gamma\gamma}B(X \to \pi^+\pi^- J/\Psi) < 16.7 \text{ eV} (90\% \text{ CL})$ 0.75 0.8 0.7 0.85 **ISR** production (systematic errors are included): 0.55 0.6 0.65 0.7 0.75 0.8 0.5 0.85 $M(\pi^{+}\pi^{+}1^{+}1) - M(1^{+}1) (GeV/c^{2})$ $\Gamma_{ee}B(X \rightarrow \pi^+\pi^-J/\Psi) < 6.8 \text{ eV} (90\% \text{ CL})$

SUMMARY

- heavy quarkonium physics is still an active field:
 - large data samples collected for quarkonia in e⁺e⁻ annihilation by BES-II (cc), CLEO III (bb), CLEOc (cc).
- many new important experimental observations and measurements are available and many others are expected.
- theory is coming along with progress in NRQCD and Lattice QCD. Many unresolved puzzles still to be understood.

Thank You