

Τ

р

q

 \mathbf{B}_0

CKM Measurements in Semileptonic B Decays

$$\Gamma(b \to u \ell \nu) \approx \frac{192\pi^3}{G_2^F m_5^p} |V_{ub}|^2$$

Rate gives
$$|V_{ub}|^2$$

$$\frac{qd_{5}}{qL} = \frac{5\pi^{2}}{C_{5}^{E}b_{3}^{\mu}}|f^{\dagger}(d_{5})|_{5}|\Lambda^{np}|_{5}$$

Form factors needed from theory (LQCD, LCSR, quark models)

6 April 2003

 ${}^{qn}\!\Lambda$

American Physical Society Meeting - April 2003 Philadelphia

р

n

+9

Shapes vary \longrightarrow model dependence

New analysis which bins in q^2 to reduce model dependence

Normalization of form factors has a large uncertainty.

- Exc: Poorly known form factors
- Inc: Effect of kinematic cuts

 \longrightarrow Important to pursue both inclusive and exclusive measurements.

• Suppress using kinematics

where α is chosen event by event to force $\Delta E = 0$

Reject "ghost" tracks & shower fragments from hadronic interactions. Energy and momentum conservation: $\Delta E \approx 0$, $M_{m\ell\nu} = M_B$ for signal

Exclusive $B \rightarrow [\pi, \varphi, \omega, \eta] \ell^+ \nu$ Reconstruction

(səbom 7) **snosəl**M

- $_{0}\pi^{\pm}\pi \leftarrow \pm_{q} \text{ bus } ^{-\pi^{\pm}}\pi \leftarrow _{0}^{q} \bullet$
- $_{0}\boldsymbol{\mu}^{-}\boldsymbol{\mu}^{+}\boldsymbol{\mu} \leftarrow \boldsymbol{\omega} \bullet$

• π^{\pm} and $\pi^{0} \to \gamma\gamma$

• $u \to u_+ u_- u_0$ and $u \to \lambda \lambda$

Leptons (2 flavors)

- səbom (V)
f ni ə/Və
Đ (ö.1)0.1 $\leq \imath q$ ərinpə
A \bullet

(%1 $\approx \eta$, %1.0 \approx 9 sətsi sake take $(\epsilon \geq 90\%)$ anomi o another $\epsilon \approx 0.1\%$.

- souittus^N
- From neutrino reconstruction; $M_{\nu}^{2} = E_{\min}^{2} p_{\min}^{2}$ consistent with 0

American Physical Society Meeting - April 2003 Philadelphia

- $\Delta E, M_{m \ell \nu}$ variables
- $\mathcal{A}[n, \omega, q, \pi]$ səigoloqot əbom Isngi
s7 \bullet
- Isospin & quark symmetry constraints:

 (\mathcal{O})

$$- \Gamma(\pi^{-}) = 2\Gamma(\pi^{0})$$

- $\Gamma(\rho^{-}) = 2\Gamma(\rho^{0}) = 2\Gamma$

- 3 q^2 bins for π and ρ
- Net event charge $|\Delta Q| = 0, 1$
- Accounts for crossfeed

Binimic $^2 P$ $\gamma \pi \ell^+ \nu q^2$ binning Projections show $\Delta Q = 0$ ($|\Delta Q| = 1$ also in fit)

- points on-resonance data
- open histogram signal
- red histogram crossfeed
- səpom u so Λ mort
- Yellow $B \to X_u \ell v$ other
- cyan fakes
- \bullet dotted continuum
- hatched $b \rightarrow c$

Clear signals in all 3 q^2 bins

American Physical Society Meeting - April 2003 Philadelphia

$$\begin{split} B & \rightarrow \rho \ell^+ \nu \ q^2 \text{ binning} \\ \text{Central } M_{\pi\pi} \text{ bin (95 MeV)} \\ \rho_\ell > 1.5 \text{ GeV/c} \end{split}$$

- points on-resonance data
- open histogram signal
- coarse hatched crossfeed
- səbom V rədə mort
- red histogram crossfeed
- səpour u to π mort
- Yellow $B \to X_u \ell \nu$ other
- cyan fakes
- dotted continuum
- fine hatched $b \to c$

	$0.0 \pm 0.1 \pm 1.0 \pm 18.0 \pm 48.0$	$\mathcal{B}_{ ext{total}}$	$B_+ \to u \ell_+ n$
\overline{V}	$00.0 \pm 01.0 \pm {}^{80.0+}_{11.0-} 01.0 \pm 03.0$	$\mathcal{B}^{>16}$	
abla	$1.24 \pm 0.26 \stackrel{+0.27}{-0.33} \pm 0.22 \pm 0.00$	\mathcal{B}^{8-16}	
Ţ	$0.43 \pm 0.20 \pm 0.23 \pm 0.09 \pm 0.0$	$\mathcal{B}^{< 8}$	
1	$2.17 \pm 0.34 \stackrel{74.0+}{_{45.0-}} \pm 0.41 \pm 0.01$	$\mathcal{B}_{ ext{total}}$	$B_0 \to b \ell_+ \hbar$
8	$0.25 \pm 0.09 \pm 0.04 \pm 0.01 \pm 0.0$	$\mathcal{B}^{>16}$	
8	$0.0 \pm 10.0 \pm 70.0 \pm 11.0 \pm 30.0$	\mathcal{B}^{8-16}	
IC	$0.4 \pm 400.0 \pm 30.0 \pm 11.0 \pm 84.0$	$\mathcal{B}^{< 8}$	
20	$0.0 \pm 10.0 \pm 11.0 \pm 81.0 \pm 85.1$	$\mathcal{B}_{ ext{total}}$	$B_0 \to {}^{\!$
	$^{h-01\times}$	${\cal B}_{q^2}$ interval	эboM

Rate consistent with expectations from $B \to \pi \ell \nu$ & quark model Evidence for $B \to \eta \ell \nu$ at 3.2 σ statistical significance SIO

For $\pi \ell \nu$ very little model dependence from FF shape. All models have large uncertainty for FF normalization. 3 FFs give 3 values for $|V_{ub}|$.

American Physical Society Meeting - April 2003 Philadelphia

Extractions of $|V_{ub}|$ from $B \to \pi \ell \nu$

Vinistresung uncertainty Lattice QCD, as cited plus \dots for the second strength \dots for the second strength \dots is the second strength strength

Extractions of $|V_{ub}|$ from $B \to \rho \ell \nu$

Again as $B \to \pi \ell \nu$:

- From fits to rates in q^2 bins
- From large q^2 using LQCD
- From small q^2 using LCSR

• Theory uncertainties taken as

70% of spread except ... Lattice QCD, as cited plus 20% quenching uncertainty— Broad ρ is more difficult than π on the lattice.

۸^{qn} × ۱0₃ 5.0 2.5 3.0 3.5 4.0 4.5 5.0 5.6 6.0 $\pi \ell + \rho \ell \nu$: Lacp + Lcsr P&v: LQCD + LCSR Average of LQCD + LCSR Ball '98 LCSR d₅ < 16 Ge√² **NKOCD '98** Lattice QCD d₅ ≥ 16 GeV² Average, all q² **NKOCD '98** Melikhov '00 II MÐSI 89' II68 ²p IIA 3600303-015

We suggest the average of LQCD and LCSR as our central result.

Results: Reporting average of LQCD and LCSR results as most reliable

 $01 \times (82.0 \pm \frac{82.0}{60.0} \pm \frac{61.0}{71.0} + 71.0 \pm 71.6) = |_{du}V| : 43q \leftarrow d$ $8^{-01} \times (80.0 \pm \frac{82.0}{60.0} \pm \frac{81.0}{71.0} + 71.0 \pm 71.6) = |_{du}V| : \text{benidmoD}$

this transformed to the theory uncertainty $|A_{ub}|$, dominated by the ory uncertainty $|A_{ub}|$, dominated by the theory uncertainty

Differences compared to 1996 CLEO analysis (superseded):

- lower lepton momentum cut π at 1.0 ρ at 1.5 GeV/c
- $\bullet\,$ more statistics allowing q^2 binning giving less model dependence
- \bullet theory form factors LQCD and LCSR \bullet

Compatible with other measurements:

- CLEO inclusive $|V_{ub}| = (4.08 \pm 0.34 \pm 0.44 \pm 0.29) \times 10^{-3}$
- Other exclusive measurements: (CLEO, Belle, BaBar)

(to be submitted to PRD)

12

K. M. Ecklund (Cornell)

Exclusive $b \to u \ell v$ and $|V_{ub}|$

suotions 3	pranching	uo (%)	ETOTS	ematic	ZARP
• ' J	• L L		ALL		• !	' N

Dominant uncertainty: neutrino reconstruction/simulation									
£. 91	21.4	2.92	<u>ጉ.</u> ይ	25.1	£.81	7.01	12.4	9.8	Lower
	₽I-	<u>31-</u>	6-	-13	—	_	_	_	Non Resonant
£. 91	16.2	21.5	6.63	21. 4	£.81	7.01	12.4	9.8	Upper
2.0	5.0	2.0	2.0	5.0	5.0	2.0	2.0	2.0	Luminoaity
5.0	0.2	5.0	0.2	5.0	5.0	5.0	5.0	5.0	UI notqsJ
1.0	2.3	2.2	6.I	₽.4	0.2	0.0	0.0	0.0	niqsoal
₽.1	2.1	₽.I	4.2	2.1	d.0	0.3	1.0	0.2	${}^{\bot B+ / {}^{\bot B_0}}$
1.4	1.0	0.1	д.S	0.0	2.2	5.3	9.5	₽.4	00f/-+f
0.8	0.6	0.8	0.5	0.6	0.6	0.8	0.6	0.6	Езкез
5.0	5.0	0.1	0.01	0.6	5.0	0.2	5.0	0.1	Cont. smoothing
9.1	9.d	1.9	23.8	E.8	6.1	8.1	0.6	d.0	n mobbsəf ulu $v \leftarrow d$
વે.વે	4.2	2.₽	₽.12	5.0	3.2	6.1	2.5	7.I	$q \to c \zeta n$
£.71	ð.81	₽.91	Z.I∳	7.81	2.71	5.2	3.01	8.9	noitslumis v
u	≥ 16	81 - 8	8 >	$\mathcal{B}_{\mathrm{total}}$	≥ 16	61 - 8	8 >	$\mathcal{B}_{\mathrm{total}}$	Systematic
	q^2 interval (GeV ²) q^2 interval (GeV ²)								
		17(1	m)d			ng	rΨ		

Exclusive $b \to u \ell v$ and $|V_{ub}|$

IstoT	92.9	94.01	6.20	61.71	£7.81	41.72	19.43	13.53	17.25
v production	0.52	9 ₽. £	2.18	36.1	65.0	90. 3 1	4.12	88.0	2.93
K_L production	81.0	11.0	0.21	65.0	11.0	₽8.0	60.0	0.32	0.12
.mis flotilqa	04.0	1.35	0.53	18.2	1.03	76.01	26.0	<u>ل</u> 9.4	0.02
track resol.	10.1	77.I	2.44	61.11	6.22	12.74	10.9	2.66	0.92
track eff.	69.5	d. h	61.4	2.56	79.8	13.27	6.53	3.39	97.6
Splitoff rejection	1.52	26.2	3.05	5.03	1.23	₽₽.6	08.1	2.54	0ð.ð
Particle ID	38.1	2.50	40. 8	82.9	91.8	34.7S	£6 . 9	90.1	81.0
Jəwonle TX	1.25	₽0.1	35.1	₽₽.I	00.8	85.8	12.7	čč. 1	\$7.2
γ resol.	<i>4</i> 0. <i>₽</i>	78.2	95.3	5.33	19.2	89.6	2.34	4.24	6.62
-Ĥ∍ γ	0.60	86.9	2.66	60.6	11.11	38.11	₽ [.][09.01	99.d
	lstot	$q^{2}_{8>p}$	$^{2}_{01-8}$	$^{2}_{01 < p}$	lstot	$^{2}_{8>p}$	$^{2}_{01-8}$	² 01 2	lstot
noitaitav	$n_+ j \mu$			$\neg \neg + \vartheta - d$			лги		