

B Hadronic Decays at CLEO

One last look ?

Jean Etienne Duboscq Cornell University jed@mail.lepp.cornell.edu

- CLEO for the novice
- Two Body Rare B Decays
 - hep-ex/030202
- BR(B \rightarrow DK)/BR(B \rightarrow D π)
 - hep-ex/030202
- B → D*ρ Branching Ratio, Helicity Amplitude, Factorization
 - hep/ex 0301028
- Charge Asymmetry in $B^0 \rightarrow K^* \pi$

The CLEO Detector

- **CLEO III** Solenoid coil Barrel calorimeter RICH Drift chamber Silicon/beampipe Endcap calorimeter Iron polepiece Muon chambers SC quad pylon SC quads Rare earth quad Magnet iron
- CLEO2
 - DR, dEdx, TOF, CC, MU
- CLEO2.5
 - 3 layer Si detector
 - He/Propane DR gas
- CLEO3
 - RICH+dEdx
 PID
 - New DR
 - 4 layer Si

Rare B Decays

- B^0 to $\pi\pi$, $K\pi$, KK B^+ to $\pi\pi^0$, $K\pi^0$
- B^0 to $K^0\pi^0$, K^0K^0 , $\pi^0\pi^0$ B+ to πK^0 , KK^0
- B^0 to $p\overline{p}$, $\Lambda\overline{\Lambda}$ B^+ to $p\overline{\Lambda}$
- hh provides insight into γ via interference
- Door for new New physics via Penguin Diagrams
- Independent from charm final states
- Use CLEO2 + CLEO3 data = 15 fb⁻¹

Rare B: The Method

- Hard Selection of final states
 - Track, shower, π^0 quality cuts
 - M_B and ΔE , $\cos(\theta_{sphericity})$ cuts
 - PID: combine RICH, dEdx
- Maximum Likelihood extraction of signal
 - use $M_B, \Delta E, B$ direction, Fisher

$$\Delta E = E - E_{Beam}$$
$$M_B = \sqrt{(E_{Beam}^2 - \Sigma \vec{p_i})}$$

Rare B: Particle ID

- K/Pi :Combine RICH, dEdx
 - $\Delta L = \Delta L(RICH) + \Delta L(dEdx)$
 - Calibrated using Data $D^* (\rightarrow (K\pi)\pi)$
 - $\Upsilon(4s)$ at rest Momentum of interest 2.5 GeV
 - Chose cut to accept 90 % of π/K
 - Fake rate = 11% π faking K, 8% K faking π
- K/p : Use only RICH
 - Calibrate on Λ to $p\pi$, $D^*(\rightarrow (K\pi)\pi)$ sample
 - p acceptance 76 % pbar = 72%
 - Fake rate: K fake p = 1 %

- Extended Maximum Likelihood Fit
- Probability Product for MB, ΔE , B direction, Fisher
 - for each of 13 signals, cross feeds from other B modes, and qqbar background
- Fisher:
 - linear combination of
 - direction of thrust axis of candidate
 - 9 Virtual Calorimeter Bins
 - Momentum of highest e, μ , K, p in event
 - Signal Fisher from MC
 - Background Fisher used in all modes
 - 1.4 σ separation

<u>Virtual Calorimeter</u>: Scalar sum of momenta in 10° bins around candidate sphericity axis

Rare B: Results

Largest Systematics: Λ , π^0 , K_s , $N(B) << \sigma(stat)$

CLEO results still competitive to BaBar and Belle

Rare B: Likelihoods

- CLEO3 data
- PID on fast π , K
- Account for pion contamination in K channel
- Small PID syst

$$\frac{Br(B^- \to D^0 K^-)}{Br(B^- \to D^0 \pi^-)} = (9.9^{+1.4+0.7}_{-1.2-0.6}) \times 10^{-2}$$

Do Extended Max Likelihood fit for M(B), $m(\rho)$, for both Signal and Background to get N(B)

$$\mathcal{B}r(B^- \to D^{*0}\rho^-) = (0.98 \pm 0.06 \pm 0.16 \pm 0.05)\%$$

$$\mathcal{B}r(\overline{B}^0 \to D^{*+}\rho^-) = (0.68 \pm 0.03 \pm 0.09 \pm 0.02)\%$$

I st syst π^0 reconstruction dominates - 2nd syst: D, D* BR errors:

BSW Effective couplings: color enhanced a l color suppressed a2

 $\frac{\mathcal{B}r(B^- \to D^{*0}\rho^-)}{\mathcal{B}r(\overline{B^0} \to D^{*+}\rho^-)} \approx (1 + 0.75a_2/a_1)^2$

 $a_2/a_1 = 0.21 \pm \pm 0.03 \pm 0.05 \pm 0.04 \pm 0.04$ last syst is from f_+/f_{00}

Decay can be described by Helicity Amplitudes H(-,0,+)

$$\frac{d^3\Gamma}{d\cos\theta_{D^*}d\cos\theta_{\rho}d\chi} = \frac{9}{32\pi} |2H_0\cos\theta_{D^*}\cos\theta_{\rho} + 2(H_+e^{i\chi} + H_-e^{-i\chi})\sin\theta_{D^*}\sin\theta_{\rho}|^2$$

Do Extended Max Likelihood fit for $M(B), m(\rho),$ $d\Gamma^* \in (\chi, \cos(\theta(D^*), \cos(\theta(\rho))))$ for both Signal and Background

$B \rightarrow D^* \rho$: Helicity – Factorization

	D*0	D*+
H0	0.944±0.009±0.009	0.941±0.009±9.006
H+	0.122±0.040±0.010	0.107±0.031±0.011
α+	1.02±0.28±0.11	1.42±0.27±0.04
H-	0.306±0.030±0.025	0.322±0.025±0.016
α-	0.65±0.16±0.04	0.31±0.12±0.04

α: Possible Phase of H - sensitive to FSI

$$\frac{\Gamma_L}{\Gamma} (\overline{B}^0 \to D^{*+} \rho^-) = 0.885 \pm 0.016 \pm 0.012$$
$$\frac{\Gamma_L}{\Gamma} (B^- \to D^{*0} \rho^-) = 0.892 \pm 0.018 \pm 0.016$$

Charge Asymmetry in $B^0 \rightarrow K^*\pi$

$$\mathcal{A}_{CP} = \frac{\mathcal{B}(\overline{B}^0 \to K^*(892)^- \pi^+) - \mathcal{B}(B^0 \to K^*(892)^+ \pi^-)}{\mathcal{B}(\overline{B}^0 \to K^*(892)^- \pi^+) + \mathcal{B}(B^0 \to K^*(892)^+ \pi^-)}$$

- CLEO2 data 9 fb⁻¹
- Final States: $K_{s} h^{+/-} \pi^{+/-}$, $K^{+/-} h^{+/-} \pi^{0}$ Actually measure A_{+-} - 99.99% correlated with A_{CP} for this decay
- Max Likelihood fit to M_B, ΔE, Dalitz Plot, dEdx(h^{+/-}), B decay angle, Fisher Fisher is I.c. of Virtual Calorimeter, Fox-Wolfram R2, sphericity angle
 - include K*+(892) π-/K-, K*+(1430) π-/K-, ρ0 Ks0, f0(980)Ks, Ks π π/K NR, K*0(892)π0, K*0(1430) π0, K-π+π0 NR exclude B → D π, ψ Ks, ψ π⁰ background slices

Charge Asymmetry in $B^0 \rightarrow K^*\pi$

$\mathcal{A}_{CP}(B \to K^{*\pm}(892)\pi^{\mp}) = 0.26^{+0.33+0.16}_{-0.34-0.15}$

90% C.L:. -0.35 < $\mathcal{A}_{CP}(B \to K^{*\pm}(892)\pi^{\mp}) < 0.79$

Theory: [14,47]% QCDF, -19% PQCD

Dominant Systematic: interference terms between signal yields

- Presented competitive results on 2 body rare B decay modes
 - Hint that γ might not agree with standard CKM fits
- Presented competitive $B \rightarrow DK/B \rightarrow D\pi$ result
- Explored Helicity Amplitudes, BSW coefficients, factorization in $B \rightarrow D^* \rho$
- First limits on A_{CP} in $B \rightarrow K^* \pi$
- We're done making B's ! CLEO-c kick off June 2003

http://www.lns.cornell.edu/public/CLEO/spoke/CLEOc