$|V_{cb}|$ and $|V_{ub}|$ from CLEO

Andreas Warburton Cornell / McGill

For the CLEO Collaboration

XXXVIIIth Rencontres de Moriond QCD and High Energy Hadronic Interactions Les Arcs 1800, France 25 March 2003

Motivation & Outline

Goal: overconstrain plane in many ways

sin 2β well-measured (BaBar/Belle) and theoretically clean

- $|V_{ub} / V_{cb}|$ side needs greater precision:
 - CLEO is pioneering techniques
 - Recent and ongoing theoretical advances

~ Current ρ - η Plane, CKM Unitarity Triangle

Recent CLEO results in semileptonic B-meson decays:

- Spectral moments to extract non-perturbative QCD parameters
- Improved inclusive |V_{cb}| measurements
- Exclusive $|V_{cb}|$: $B \rightarrow D^* \ell v$
- Improved inclusive |V_{ub}| from lepton energy endpoint

New! • Exclusive $|V_{ub}|$ and reduced model dependence: $B \rightarrow [\pi, \rho, \omega, \eta] \ell v$

• Future of $|V_{cb}|$ and $|V_{ub}|$

Les Arcs, 2003.03.25

CLEO II/II.V Detector and Datasets

CLEOII distinguished by:

- excellent Csl calorimeter
- ~95% hermeticity

CLEOII.V distinguished by (in addition):
 first silicon vertex detector at Y(4S)
 first major use of He-based drift gas

Both detectors well-understood with mature Monte Carlo

Hadronic and leptonic moments of $B \to X_c \ell v$, and $B \to D^* \ell v$ use CLEOII: (3.2 + 1.6) fb⁻¹ (on + off res.) containing 3.4M BB pairs

 $b \rightarrow s\gamma, b \rightarrow u\ell v$ endpoint and $B \rightarrow [\pi, \rho, \omega, \eta]\ell v$ use CLEOII+II.V: (9.2 + 4.5) fb⁻¹ (on + off res.) containing 9.7M BB pairs

Les Arcs, 2003.03.25

Andreas Warburton

Cornell / McGill (CLEO)

Inclusive V_{rb}: QCD Tools Required

HQET: Power-series expansions in $1/M_B$ and α_s

- Calculable inclusive observables in OPE, e.g.
 - Spectral moments:
 - E_{γ} in $b \to s\gamma$; M_{χ}^2 and p_{ℓ} in $B \to \chi \ell \nu$ Semileptonic decay widths: $\Gamma_{s\ell} \propto |V_{cb}|^2$
- 3 universal parameters encode non-perturbative QCD to order $1/M^2$
 - $-\overline{\Lambda}$: energy of light d.o.f. (b-quark pole mass)
 - λ_1 : Fermi motion energy of b quark inside meson
 - λ_2 : chromomagnetic interaction; known from **B***-**B** mass difference
- (Potential) issues

CLEO: Inclusive Measurements

- Test theoretical consistency of non-pQCD parameters across
 - Observables
- Enable extraction of CKM matrix element V_{cb}
- Help to test assumption of parton-hadron duality

Les Arcs, 2003.03.25

 $\bar{u} \text{ or } \bar{d}$

 e^{-}

Andreas Warburton

Cornell / McGill (CLEO)

Spectral Moments leading to Non-pQCD HQET Parameters

E, from Inclusive $b \rightarrow s\gamma$ M_X^2 from Inclusive $B \rightarrow X \ell \nu$ P_ℓ from Inclusive $B \rightarrow X \ell \nu$

Les Arcs, 2003.03.25

Andreas Warburton

Exclusive $|V_{cb}|$

Study $\overline{B} \to D^{*+} \ell \overline{\nu}$ and $\overline{B} \to D^{*0} \ell \overline{\nu}$ rates

HQET: predicts rate at negligible recoil

- w = 1
- $q^2 = q^2_{max}$

Fit Parameters

Intercept at w=1 Slope at w=1 $Br[\Upsilon(4S) \rightarrow B^+B^-]$ $\Im(1)|V_{cb}|$ ρ^2 $(4.31 \pm 0.13 \pm 0.18)\% \quad 1.61 \pm 0.09 \pm 0.21$ 0.521 + 0.012

QED-Corrected FNAL Lattice Calculation

S. Hashimoto et al., PRD 66, 014503 (2002)

Dominant Systematics

- Efficiency (e.g., slow-pion tracking)
- Charm branching fractions
- Backgrounds
- Form factors (mostly for ρ^2)

Les Arcs, 2003.03.25

Andreas Warburton

PRL 89, 081803 (2002); PRD 67, 032001 (2003)

$$|\mathbf{V}_{cb}| = \begin{pmatrix} \pm 1.4 & [stat] \\ 46.9 & \pm 2.0 & [syst] \\ \pm 1.8 & [theo] \end{pmatrix} \times 10^{-3}$$

(±7% total)
Cornell / McGill (CLEO) 7

Exclusive |V_{cb}| Summary

 ρ^2 and $\Im(1)|V_{cb}|$ are correlated

$D^*X\ell\nu$ Component

- LEP: model (based on external BFs)
- CLEO: simultaneously fitted in data
- CLEO: better rejection due to
 missing-mass resolution

Slow-Pion Efficiency

- LEP: flat
- CLEO: ~0% 80% for 1.0 < w < 1.5
- CLEO: includes D^{*0} (π^0 flat)

Consistent at 5% level

Inclusive $|V_{\mu\nu}|$ from $B \rightarrow X_{\mu}\ell \nu$ Lepton Endpoint

Analysis

- To avoid b \rightarrow c bkg., 2.2 < p_{ℓ} < 2.6 GeV/c
- Neural-net continuum suppression •
- Remaining continuum subtracted using off-res. •
- Measure partial branching fraction •
- Sensitive to b-quark Fermi motion in B meson

Assumptions

- Common non-perturbative structure function • for $b \rightarrow u \ell v$ and $b \rightarrow s \gamma$
- Parton-Hadron duality

Endpoint Acceptance Fraction

- Convolve E_{ν} spectrum with $b \rightarrow u \ell v$ calculation
- $f_{\mu}(2.2 2.6 \text{ GeV}/c) = (13.0 \pm 2.4 \pm 1.5)\%$

Systematics

- Fraction of full spectrum above 2.2 GeV/c
- $b \rightarrow c$ bkg. simulation (D* FFs, D**, non-resonant)

Andreas Warburton

PRL 88, 231803 (2002)

(CLEO)

9

New CLEO Exclusive |V_{ub}|

 $\boldsymbol{B} \to \left[\pi, \rho, \omega, \eta\right] \ell v$

Neutrino Reconstruction Technique

- $\vec{p}_{\nu} \equiv \vec{P}_{\text{miss}}$ $E_{\nu} \equiv \left| \vec{P}_{\text{miss}} \right|$ Detector
- $\sigma(\vec{\rho}_{v}) \sim 110$ MeV Hermeticity

Since 1996 (CLEO first observation)

- Full CLEOII dataset
- Lowered lepton momentum criteria
- Improved background characterization
- Partial rates in q² bins
- Theory progress: LQCD, LCSR

Simultaneous Binned ML Fit

- $M_{m\ell\nu} \equiv \left[E_{\text{beam}}^2 \left| \alpha \vec{p}_{\nu} + \vec{p}_{\ell} + \vec{p}_{m} \right|^2 \right]^{\overline{2}}$
- $\Delta E \equiv \left(\vec{E_{\nu}} + \vec{E_{\ell}} + \vec{E_m} \right) \vec{E_{\text{beam}}}$
- 7 signal-mode topologies $[\pi, \rho, \omega, \eta] \ell v$
- Momentum transfer q², 3 bins
- 2 event net-charge states (|∆Q| = 0,1)

 $|V_{ub}|$: Exclusive Reconstruction of $B \rightarrow [\pi, \rho, \omega, \eta] \ell v$ Decays

Points: On-resonance data

Open: Signal MC simulation

Coarsely Hatched: crossfeed among P (V) modes and q² bins

Red: Crossfeed from V (P) modes into P (V) modes

Yellow: $B \rightarrow X_{\mu} \ell \nu$ non-signal feeddown; floated in fit, subject to constraint from CLEO endpoint analysis

Cyan: Fake leptons

Dotted: Continuum

Finely Hatched: $b \rightarrow c$

Andreas Warburton

Reduction of Model Dependence: q² Binning

Les Arcs, 2003.03.25

Andreas Warburton

12

Newly Final! CLEO Exclusive |V_{ub}| Result

CLEO Future of |V_{cb}| and |V_{ub}|

- Use 3 kinematic variables: M_X^2 , q^2 , $\cos \theta_{W\ell}$
- ML Fit for $b \rightarrow c$ and $b \rightarrow u$ components
- Measure rates, moments
- Preliminary |V_{ub}| seen to be consistent
- New method: suppress $b \to c \to s \ell v$ by tagging the other B's lepton ($P_e > 600 \text{ MeV}/c$)

ponents $M_X \int \frac{X}{B} \frac{W}{q}$

Les Arcs, 2003.03.25

Andreas Warburton

Cornell / McGill (CLEO) 14

 θ_{WI}

E

Summary & Outlook

• New and recent CLEO analyses, using mature data & MC samples:

- Measure Moments and Rates in semileptonic B decays
- Use <u>Inclusive</u> and <u>Exclusive</u> techniques
- Obtain $|V_{cb}|$ (σ ~3%) and $|V_{ub}|$ (σ ~15%)
- Help provide insight into CKM <u>electroweak</u> and <u>QCD</u> physics
- Most results are limited by systematic and theory uncertainties
- Techniques to reduce model dependence:
 - $b \rightarrow s\gamma$ shape function
 - q² binning, partial rates
 - Increased kinematic acceptance
- Future progress on CKM physics:
 - Still new CLEO analyses underway
 - HQET and LQCD theoretical tools attacking non-pQCD
 - CLEO-c! Stay tuned.

Les Arcs, 2003.03.25

Andreas Warburton

Slides removed for lack of time

Les Arcs, 2003.03.25

Andreas Warburton

Cornell / McGill (CLEO)

16

|V_{ub}| Challenges: Theory and Experiment

- Cabibbo Suppression: Rates are small from the outset, $\sim \Gamma(b \rightarrow c)/100$
- Interpretation: Requires both Theory and Experiment
- Mutual Reliability of Theory and Experiment: Only in limited kinematic regions

Fraction of Full b → u Decay Rate:	Inclusive	Exclusive
Theory	LARGE (OPE; Duality)	SMALL (LCSR: non-pQCD; LQCD: discretization)
Experiment	SMALL (b \rightarrow c background)	LARGE (Kinematic Constraints)