Experimental Outlook for Charm Physics

Thomas Coan Southern Methodist University CLEO Collaboration

- Why charm threshold
- Accessible Physics
- Some details
- Detectors
- Summary

Why Charm Threshold?

- Large production σ , low decay multiplicity
- Pure initial state (DD): no fragmentation
- Double tag events: no background
- Clean neutrino reconstruction
- Quantum coherence:

aids D-D mixing and CPV studies

 $D^0 \rightarrow K^- \pi^+ \qquad \overline{D}^0 \rightarrow K^+ e^- \nu$

Motivation

- D $\rightarrow l\nu$: $f_D \& f_{Ds}$
- D $\rightarrow P l v: V_{cd} \& V_{cs}$; also f(q²)
- Improve $\delta V_{ub}/V_{ub} \& \delta V_{cb}/V_{cb}$
- Improve $\delta V_{td}/V_{td} \& \delta V_{ts}/V_{ts}$ via B mixing
- Unitarity checks of V_CKM
- Definitive glueball searches
- CPV, D-D mixing, rare decays

CLEO-c Run Plan

Started Nov 2001

2002: Y(1S), Y(2S), Y(3S),... ~1-2 fb⁻¹ each Spectroscopy, matrix element, Γ_{ee} 10-20 X existing world's data set

CLEO-c

2003: ψ(3770) – 3 fb⁻¹ 30M DD events, w/ 6M *tagged* D decays (310 times MARK III)

2004: $\sqrt{s} \sim 4100 \text{ MeV} - 3 \text{ fb}^{-1}$ 1.5M D_sD_s events, w/ 0.3M *tagged* D_s decays (480 times MARK III, 130 times BES)

2005: $\psi(3100) - 1 \text{ fb}^{-1}$ 1 Billion J/ ψ decays (170 times MARK III, 15 times BES II)

CESR-c Accelerator

 Modify for low energy operation: w/o extra radiation damping, L ~ E⁴ (L ~ 1.3 x 10³³ @ Y(4S)) w/ wigglers (transverse cooling), L ~ E² (cost \$5M)

Expected machine performance:

√s	L (10 ³² cm⁻² s⁻¹)
3.77 GeV	3.0
4.1 GeV	3.6
3.1 GeV	2.0

+ $\Delta E_{beam} \sim 1.2$ MeV at J/ ψ

Tagging Technology

Pure DD/D_sD_s production: $\psi(3770) \rightarrow DD$ $\sqrt{s} \sim 4140 \rightarrow D_s D_s$ Large branching fractions (~1-15%) High reconstruction efficiency \Rightarrow High net tagging efficiency ~20% 3730601-007 3730601-009 10^{5} $D_{s} \rightarrow K^{+}K^{-}\pi^{+}$ 1 fb⁻¹ CLEOc $\sigma_{\rm M}$ = 1.4 MeV MC D⁰→ K⁻π⁺ 10⁵ $4\sigma dE/dx cut$ $1 \text{ fb}^{-1} \text{ CLEOc}$ $3\sigma \Delta E cut$ MC $\sigma_{\rm M}$ = 1.25 MeV $dE/dx + \Delta E$ cuts 10 Fakes 10⁴ **RICH** cut Candidates / 0.6 MeV 00 00 00 00 00 Candidates / 0.6 MeV $3\sigma \Delta E cut$ RICH + ΔE cuts Fakes ᠋ᡎᡔ᠊ᠬᢞᡡᠬ^{ᢧᢘᠾᡄᡭ}ᠾᡗᡅ 10 10 1.94 1.96 1.98 2.00 2.02 1.84 1.88 1.86 **M(D)** M (D) (GeV/c²) M (D) (GeV/c²)

Absolute Br's w/ Double Tags

~ Zero bkgnd in hadronic modes

w/ 3 fb⁻¹

Mode	√s (GeV)	PDG02	CLEO c
		(δ B/B %)	(δB/B %)
D ⁰ →K ⁻ π ⁺	3770	2.4	0.6
$D^{\scriptscriptstyle +} o K^{\scriptscriptstyle -} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle +}$	3770	7.2	0.7
$D_s \rightarrow \phi \pi$	4140	25	1.9

f_{Dq} from Leptonic Decays

w/ 3 fb-1 & 3-gen CKM unitarity:

Reaction	PDG δf/f	CLEO-c ∂f/f
$D_{s}^{+} \rightarrow \mu \nu$	17%	1.9%
$D_{s}^{+} \rightarrow \tau v$	33%	1.6%
$D^{+} \rightarrow \mu \nu$	UL	2.3%
	Reaction $D_{s}^{+} \rightarrow \mu \nu$ $D_{s}^{+} \rightarrow \tau \nu$ $D^{+} \rightarrow \mu \nu$	ReactionPDG $\delta f/f$ $D_s^+ \rightarrow \mu \nu$ 17% $D_s^+ \rightarrow \tau \nu$ 33% $D^+ \rightarrow \mu \nu$ UL

Semileptonic Decays

Br
$$(D \rightarrow P l v) / \tau_D = \Gamma = \gamma |V_cq|^2$$

d $\Gamma (D \rightarrow P l v) / dq^2 \propto |V_cq|^2 |f_+(q^2)|^2$

Mode	PDG02 (δB/B%)	CLEOc (δB/B%)	
$D^0 \rightarrow K / v$	5	0.4	
$D^0 ightarrow \pi \ I \ v$	16	1.0	
$D^{\scriptscriptstyle +} o \pi \ \mathit{I} \ v$	48	2.0	
$Ds \rightarrow \phi / v$	25	3.1	

$$\therefore \delta V_{cd}/V_{cd} \& \delta V_{cs}/V_{cs} \sim 1.6\%$$
$$\delta V_{cd}/V_{cd} = 7\% \text{ (PDG02)}$$
$$\delta V_{cs}/V_{cs} = 11\% \text{ (PDG02)}$$

 $|V_{CKM}|^2$

 $|f(q^2)|^2$

Compare to B Factories

	CLEO-c 2 - 4 fb-1	BaBar 400 fb-1	Current Knowledge
f_D	2.3%	10 - 20%	NA
f_Ds	1.7%	6 - 9%	19%
Br (D+ -> Kππ)	0.7%	3 - 5%	7%
Br (Ds -> φπ)	1.9%	5-10%	25%
Br (D0 -> Kπ)	0.6%	2 - 3%	2%
Statistics lim	nited		
		Systemat	tics and bkgnd limit

 $V_{cd} \& V_{cs}$

$$\mathbf{V} = \begin{pmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{pmatrix}$$

3 angles + 1 phase (CP violating) <u>Hierarchy</u>: ~1, ~ λ , ~ λ^2 , ~ λ^3 ($\lambda \approx 0.22$)

Expt'l Goal: Overconstrain V_CKM

Probing QCD

• Gluons carry color charge \Rightarrow binding: Glueballs = $|gg\rangle$ and Hybrids = $|qqg\rangle$

$J/\Psi \rightarrow \gamma X$ Inclusive γ - Spectrum

Summary

- DD threshold running:
 - key kinematic advantages
 - huge physics reach: f_D , f_{Ds} , $f_+(q^2)$, V_CKM, ...
- Physics: Fall '03 (CLEO-c) &2006 (BESIII)