CLEO D and B Results

Karl M. Ecklund Cornell University WI N2003 October 8, 2003

WIN2003

New cs States

- cs spectrum: consider quark spins and L: j=L+S_q
 - J^P=O⁻ D_s⁺(1968); ground state decays weakly
 - $J^{P}=1^{-}$ $D_{s}^{*+}(2112)$; decays to $D_{s}\gamma$ (94%), $D_{s}\pi^{0}$ (6%)
 - $J^{P}=1^{+}D_{s1}^{+}(2536)$; decays to D*K, narrow Γ <2 MeV
 - $J^P=2^+ D_{sJ}^{*+}(2573)$; decays to DK, narrow $\Gamma=15$ MeV
- Should also be j=½, 0⁺, 1⁺ states, expected to decay to D^(*)K by S-wave and therefore broad
- Narrow peak recently seen by BaBar in $D_s \pi^0$
- What might this be: 0⁺, 1⁺? DK Molecules? qqqq?

CLEO Sees Two States

PRD68, 032002 (2003)

- Confirms the BaBar observation of D_s(2317)
 - $\sigma = 8.0 \pm 1.3 \text{ MeV}$
 - Detector resolution:
 6.0±0.3 MeV → Γ<7 MeV
 - 165±20 events in peak
- Finds 2nd state decaying into $D_s^* \pi^0$, at 2463 MeV
 - $\sigma = 6.1 \pm 1.0 \text{ MeV}$
 - Detector resolution:
 6.6±0.5 MeV → Γ<7 MeV
 - 55±10 events in peak

CLEO B and D Physics Results

Are there really two?

- 350 MeV ∆M is nearly the same
- Missed photon in $D_s^* \rightarrow D_s \gamma \& 2463$ mimics 2317
- Take D_s(2463) candidates and plot
 M(D_sπ⁰) –M(D_s):
 - Feeds down to 2317
 - Broader peak σ = 15 MeV

 $D_s(2317)$ does "feed up" to the $D_s(2463)$ by attaching to a random γ . Low probability of (9.0±1.7)%, wide peak.

WI N2003

Establishing Both States

- 2 states established in multiple ways:
- Account for crossfeed using MC and data
 - N(2317)=155±23
 - N(2463)=41±12
- Look at D_s* sideband
 sb-subtracted fit: 5.7 σ
- Fit 2317 peak w/ wide & narrow Gaussians
- 3 techniques agree: There are two states.

Searches for other D_s decays

- To aid interpretation of new states, other decay modes helpful
- Look for $D_{sJ}^{*}(2317)$ decays to $D_{s}^{(*)}\gamma$, $D_{s}^{*}\pi$ & $D_{s}\pi\pi$
- Look for $D_{sJ}(2463)$ decays to $D_{s}^{(*)}\gamma$, $D_{s}\pi$ $D_{sJ}^{*}(2317)\gamma \& D_{s}\pi\pi$

Electromagnetic Decay

CLEO B and D Physics Results

Limits on other decay modes

		5			
7777	Mode	Yield	90% CL	Thry	
	$D_s \pi^0$	150±49	-	=1	
	$D_s^* \pi^0$	-1.7±3.9	<0.11	0	
	D _s γ	-22±13	<0.052	0	
	D _s *γ	-2.0±4.1	<0.059	0.08	
	$D_s \pi^+ \pi^-$	1.6±2.6	<0.019	0	

NC	Mode	Yield	90% CL	Thry	
54	$D_s^*\pi^0$	41±11	-	=1	
	D _s γ	40±17	<0.49	0.24	
	D _s *γ	-5.1±7.7	<0.16	0.22	
	$D_s \pi^+ \pi^-$	2.5±5.4	<0.08	0.20	
	D _s (2317)γ	3.6±3.0	<0.58	0.13	

 $\mathbf{R}/\mathbf{D} \star \mathbf{\pi}0$

- Lack of $D_{sJ}^{*}(2317) \rightarrow D_{s}^{*}\pi^{0}$ evidence for 0^{+}
- Lack of $D_{sJ}(2463) \rightarrow D_s \pi^0$ and DK supports interpretation as 1⁺
- Other limits consistent with theory for 0⁺,1⁺
- $D_{sJ}(2463) \rightarrow D_{s}\pi^{+}\pi^{-}$ expected (OZI) but not seen yet (<8% $D_{s}\pi^{0}$)
- Consistent interpretation as 0⁺ and 1⁺ cs mesons
- More exotic explanations

WIN2003

N C

First Search for $D^0 \rightarrow \gamma \gamma$

B \rightarrow ππ,Kπ, DK: windows on γ

- $B \rightarrow \pi\pi$, $K\pi$ can proceed via $b \rightarrow u$ (tree),
 - FCNC sensitive to new particles in loops
- or $b \rightarrow s$, $b \rightarrow d$ (penguins)
 - Sensitive to |Vub| phase γ
- $B \rightarrow \pi \pi, K \pi$ + theory gives γ
- Final results from CLEO Y(4S) datasets: 15.3 fb⁻¹ + 6.6 fb⁻¹ below Y(4S)

PRD 68, 052002 (2003)

WIN2003

CLEO B and D Physics Results

Karl Ecklund 10

CLEO Results $B \rightarrow \pi \pi$, $K\pi$

- Look at 13 modes
 - $K\pi$, $\pi\pi$, KK, $\Lambda\Lambda$, pp, Λp
- Reconstruction
 - Suppress qq bkgd (shape)
 - PID for K with RICH
 - Peaks in ΔE and M(B)
 - Max. Likelihood fits
- 6 modes w/ significance
- KK limits at 10⁻⁶ level
- Good agreement with
 - Previous CLEO (II,II.V)
 - Belle and BaBar (Mar'03)
- CLEO Combined on left

Implications for γ

CLEO II $B \rightarrow D^{0}K^{-}$ With PID Cuts PPD 68, 052

PRD 68, 052002 (2003)

- Can proceed via
 b→cus or b→ucs
- Interference via (D/D) \rightarrow f gives sensitivity to γ
- MLFit to CLEO III
 with RICH PID
- Projections of MLFit

$$\frac{\mathbf{B}(B \to D^0 K^-)}{\mathbf{B}(B \to D^0 p^-)} = (9.9^{+1.4+0.7}_{-1.2-0.6}) \times 10^{-2}$$

WIN2003

A_{CP} in the decay rate of $B^0 \rightarrow K^*(892)^*\pi^-$

- In SU(3) symmetry limit: $A(B^{0} \rightarrow K^{*}(892)^{+}\boldsymbol{p}^{-}) = -|P| + |T|e^{i(\boldsymbol{g}+\boldsymbol{d})}$ $\overline{A}(\overline{B}^{0} \rightarrow K^{*}(892)^{-}\boldsymbol{p}^{+}) = -|P| + |T|e^{i(-\boldsymbol{g}+\boldsymbol{d})}$
- Measuring $\langle B \rangle \sim (A^2 + \overline{A}^2)$ and $A_{CP} \sim \langle B \rangle (\overline{A}^2 A^2)$ allows the extraction of both γ and the strong phase, δ .
- CLEO measured (PRL 89, 251801 (2002)):

 $B(B \to K^*(892)^{\pm} \boldsymbol{p}^{\mp}) = (16^{+6}_{-5} \pm 2) \times 10^{-6}$

This study extends the previous analysis and

measures:

$$A_{CP} \equiv \frac{B(\overline{B}^{0} \to K^{*}(892)^{-} \boldsymbol{p}^{+}) - B(B^{0} \to K^{*}(892)^{+} \boldsymbol{p}^{-})}{B(\overline{B}^{0} \to K^{*}(892)^{-} \boldsymbol{p}^{+}) + B(B^{0} \to K^{*}(892)^{+} \boldsymbol{p}^{-})}$$

WIN2003

- Final state particles: $(K^+\pi^0)h^-$, $(K_S\pi^+)h^-$ where $h = \pi^-$ or K^-
- Veto: $B \rightarrow D\pi$; $D \rightarrow K\pi$ and $B \rightarrow J/\psi K$; $J/\psi \rightarrow \mu\mu$
- Simultaneous fit to Dalitz plots using a reasonable menu of resonances: K*(892), K*(1430), ρ(770), f⁰(980)
- MLFit uses PDFs (M_B , ΔE , F, cos θ_B , PID, Dalitz M²'s) taken from MC and off-resonance data

Results for A_{CP} in $B^0 \rightarrow K^*(892)^+\pi^-$

Fit results

- Yield for $B^0 \to K^*(892)^+\pi^-$, $K^{*+} \to K_S^0\pi^+$: 12.6 ± 4
- Yield for $B^0 \to K^*(892)^+\pi^-$, $K^{*+} \to K^+\pi^0$: 6.1 ± 2
- Combined significance 4.6s
- Systematic errors •
 - Dalitz PDF shapes
 - Fitting method
 - Interference among intermediate resonances

 $A_{CP}(B^0 \to K^*(892)^+ \mathbf{p}^-) = 0.26^{+0.33^{+0.10}}_{-0.34^{-0.08}}$

- Number of resonances in fit
- Final results for A_{CP} : •

 $B^0 \rightarrow K^*(892)^+\pi$

 $A_{CP}(B^0 \to K^*(892)^+ \mathbf{p}^-) \in [-0.31; +0.78]$ at 90% C.L.

Analysis of results (CLEO+Belle) weakly favors $\cos \gamma < 0$ (W. Sun hep-ph/0307212) WIN2003 **CLEO B and D Physics Results**

3100502-001

More CLEO Physics

- Charmless B decays
 - B-) η'X_s BF
 - Upper Limit on Baryons in B \rightarrow X_s γ
- CKM physics
 - |V_{cb}| and |V_{ub}|:
 Ron Poling's talk

- Charmed Baryons – CPV in $\Lambda_c \rightarrow \Lambda e v$
- Charm Decays
 - Branching fractions
 - Mixing and DCSD
 - Dalitz plot analyses
 - Hadronic structure
 - CPV via interference in Dalitz Plot D⁰ $\rightarrow \pi^+\pi^-\pi^0$

Summary

- CLEO clearly sees two cs states
 - $D_{sJ}^{*}(2317) \rightarrow D_{s} \pi^{0}$
 - $D_{sJ}(2463) \rightarrow D_{s}^{*}\pi^{0}$
 - Other decays modes searched for & not seen
- CLEO searches for FCNC in charm decays
 D⁰→γγ
- CLEO measures rare B decays with information on $\boldsymbol{\gamma}$