CLEO-c and CKM Physics

Karl M. Ecklund Cornell University WIN 2003 October 7, 2003

October 7, 2003

CLEO-c and CESR-c

What's with the "-c"?

- CLEO detector
- Symmetric e^+e^- collider $\sqrt{s}=10.6$ GeV
- Add wigglers to improve damping and run at √s=3-6 GeV
- Access to charm threshold region
- Approved by National Science Board Feb 2003
- First Physics Run starts October 24, 2003
- 3+ year program

October 7, 2003

Context for CLEO-c

Flavor physics:

- Overconstrain V_{CKM}
- Inconsistency → new physics
- Interpretation limited by strong interaction effects

Context for CLEO-c

- Sin 2β is clean
- $|V_{ub}|$ is not
- B mixing is not

Hadronic uncertainties confound the extraction of weak physics
Non-perturbative QCD
Perturbative QCD (on better ground)
October 7, 2003

Flavor physics:

- Overconstrain V_{CKM}
- Inconsistency → new physics
- Interpretation limited by strong interaction effects

Context for CLEO-c

- Sin 2β is clean
- $|V_{ub}|$ is not
- B mixing is not

Hadronic uncertainties confound the extraction of weak physicsNon-perturbative QCDPerturbative QCD (on better ground)

October 7, 2003

Flavor physics:

- Overconstrain V_{CKM}
- Inconsistency → new physics
- Interpretation limited by strong interaction effects
- Measurements in Charm decays can validate QCD corrections needed to extract Weak physics from observables

UT Constraint from B mixing

$$\Delta M_{d} = 0.50 \, ps^{-1} \left[\frac{\sqrt{B_{B_{d}}} f_{B_{d}}}{200 MeV} \right]^{2} \left[\frac{|V_{td}|}{8.8 \times 10^{-3}} \right]^{2}$$
$$\frac{\boldsymbol{s}\left(|V_{td}|\right)}{|V_{td}|} = 0.5 \frac{\boldsymbol{s}\left(\Delta M_{d}\right)}{\Delta M_{d}} \oplus \frac{\boldsymbol{s}\left(f_{B}\sqrt{B_{B_{d}}}\right)}{f_{B}\sqrt{B_{B_{d}}}}$$

October 7, 2003

UT Constraint from B mixing

October 7, 2003

UT Constraint from B mixing

- Lattice QCD predicts decay constants $f_{D(s)}/f_{B(s)}$
- If precise measurements of f_D and f_{Ds} exist, then our confidence in non-perturbative QCD calculations needed to make constraints on the UT is increased.
- Even better if B_s mixing is observed!

UT Constraint from $|V_{ub}|$

 $|V_{ub}|$ from $B \rightarrow \pi | v$:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\boldsymbol{p}^3} |V_{ub}|^2 p_{\boldsymbol{p}}^3 |f_+(q^2)|^2$$

Form factor f(q²):

- Not well known
- Limits |V_{ub}| precision
- Predicted by LQCD

UT Constraint from |V_{ub}|

 $|V_{ub}|$ from $B \rightarrow \pi I$ v:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\boldsymbol{p}^3} |V_{ub}|^2 p_{\boldsymbol{p}}^3 |f_+(q^2)|^2$$

Form factor f(q²):

- Not well known
- Limits |V_{ub}| precision
- Predicted by LQCD
- Absolute rate and shape is a stringent test of theory
- Heavy quark symmetry relates $D \rightarrow \pi I v$ to $B \rightarrow \pi I v$
- A precise measurement of $D \rightarrow \pi I v$ can calibrate LQCD and allow a precise extraction of $|V_{ub}|$ from $B \rightarrow \pi I v$

Current V_{CKM} From direct Measurements -no unitarity imposed

Current V_{CKM} From direct Measurements -no unitarity imposed

CLEO-c will redefine 2nd generation elements And enable improvements in 3rd generation

Current V_{СКМ} From direct Measurements -no unitarity imposed

CLEO-c will redefine 2nd generation elements And enable improvements in 3rd generation

Current V_{СКМ} From direct Measurements -no unitarity imposed

CLEO-c will redefine 2nd generation elements And enable improvements in 3rd generation

CESR-c

7

6/12 Wigglers E=1.5-3 GeV Installed Spring'03 6 more March-May'04 CLEO-c and CKM Physics Karl Ecklund

October 7, 2003

CESR-c

One day scan of ψ' :

CLEO-c Detector

State of Art Detector:

- Drift Chamber Tracking (1 Tesla)
- RICH Particle ID
- Crystal EM Calorimetry
- 93% of solid angle
- Only small changes
 from CLEO III
 - B field 1.5 \rightarrow 1 T - Silicon \rightarrow ZD

October 7, 2003

October 7, 2003

New Inner Detector

- Continuous tracking volume
- Low mass (σ_p is MS limited)
- Nothing to vertex at charm threshold!

- Replaced Silicon Vertex Detector May 2003
- 6 stereo layers:
 - r=5.3 cm 10.5 cm
 - 12-15° stereo angle
 - | cos θ | < 0.93
- 300, 10 mm cells
- 1% X₀ inner AI tube .8mm
- Helium-Propane (60:40)
- 20 μm Au-W sense wires
- 110 μm Au-Al field wires
- Outer Al-Mylar skin

October 7, 2003

CLEO III Y(4S) Typical Hadronic Event

Average:

- 10 tracks
- 10 showers

October 7, 2003

CLEO-c ψ(3770) Typical Hadronic Event

Average:

- 5 tracks
- 5 showers

Event Recorded September 29, 2003

Charm Threshold Region

- D⁺D⁻, D⁰D⁰ at ψ(3770)
- D<u>s</u>⁺D_s⁻at √s=4140 MeV
- Potential for $\Lambda_c^+ \Lambda_c^-$
- Will also run on J/ψ and possibly ψ'

$D\overline{D}$ cross section at $\psi(3770) \sim 5$ nb (Mark III) $D_s\overline{D}_s$ cross section ~ 0.5 nb

CLEO-c Run Plan

Phase I: $\psi(3770) - 3 \text{ fb}^{-1} (\psi(3770) \rightarrow \text{DD})$ 30 million DD events, 6 million tagged D decays (310 times MARK III) Phase II: $\sqrt{s}=4140 \text{ MeV} - 3 \text{ fb}^{-1}$ 1.5 million D_sD_s events, 0.3 million tagged D_s decays (480 times MARK III, 130 times BES) Phase III: ψ(3100) – 1 fb⁻¹ 1 Billion J/ψ decays (170 times MARK III, 20 times BES II) **Now:** Dec'02 5 pb⁻¹ at $\psi(3770)$ 50 pb⁻¹ on $\psi(3770)$ Oct'03-Jan'04

Tagging Technique – Tag Purity ψ(3770) → D D $\sqrt{s} \sim 4140 \rightarrow D_s \overline{D}_s$

- Charm mesons have many large branching ratios (~1 15%)
- High reconstruction efficiency
 - → High net tagging efficiency ~20%

Anticipate 6M D tags and 0.3M D_s tags

October 7, 2003

Absolute Charm Branching Ratios

1500

Double tag technique:

 $D^- \rightarrow tag$ Monte Carlo $D^+ \rightarrow K^- p^+ p^+$ Almost zero background in Candidates / 0.5 MeV 000 hadronic tag modes Measure absolute $B(D \rightarrow X)$ with double tags # of X **B** = 1.870 1.875 1.860 1.865 1.880 # of D tags M (D) (GeV/c²) **δB / B (%)** Double \sqrt{s} $L (fb^{-1})$ Decay tags PDG $D^0 \rightarrow K^- \pi^+$ 3770 3 53,000 2.4 $D^+ \rightarrow K^- \pi^+ \pi^+$ 3770 3 60,000 7.2 3 $D_{s} \rightarrow \phi \pi$ 4140 6.000 25 CLEO-c: potential to set absolute scale for heavy quark measurements

CLEO-c and CKM Physics Karl Ecklund October 7, 2003 17

f_{Ds} from Absolute $B(D_s \rightarrow \mu^+ \nu)$

- Measure absolute B(D_s $\rightarrow \mu \nu$)
- Fully reconstruct one D (tag)
- Require one additional charged track and no additional photons
- Compute MM²
- Peaks at zero for $D_s^+ \rightarrow \mu^+ \nu$ decay

 $|f_{D}|^{2} |V_{CKM}|^{2}$

• Expect resolution of $\sim O(M_{\pi^0})$

Vcs (Vcd) known from unitarity to 0.1% (1.1%)

Decay	Deaction		$L(fb^{-1})$	δf / f (%)		
Constant	Reaction	Energy (wev)		PDG	CLEO-c	
f _{Ds}	$D_{s}^{+} \rightarrow \mu \nu$	4140	3	17	1.9	
f _{Ds}	$D_{s}^{+} \rightarrow \tau \nu$	4140	3	33		
f _{D+}	$D^{+} \rightarrow \mu \nu$	3770	3	UL		
October 7, 2003	CLEO-c and CKM Physics				Karl Ecklund	18

Semileptonic Decays: $|V_{CKM}|^2 |f(q^2)|^2$

Measurement of complete set of charm $P \rightarrow P Iv \& P \rightarrow V Iv$ absolute form factor magnitudes and slopes to a few %:

- almost no background
- one experiment
- Stringent test of theory!

CLEO-c I mpact on Semileptonic $\delta B/B$

CLEO-c will make significant improvements in precision for each absolute charm semileptonic branching ratio.

October 7, 2003

Determining $|V_{cs}|$ and $|V_{cd}|$

Combine semileptonic and leptonic decays – eliminating $V_{\mbox{\tiny CKM}}$

 $\Gamma(D^+ \rightarrow \pi \mid v) / \Gamma(D^+ \rightarrow \mid v)$ independent of $|V_{cd}|$

Test rate predictions at ~4% level

 $\Gamma(D_s \rightarrow \phi \mid v) / \Gamma(D_s \rightarrow i v)$ independent of $|V_{cs}|$

Test rate predictions at -4.5% level

Test amplitudes at 2% level

Stringent test of theory - If theory passes test ...

Ͻ⁰ → K⁺ e⁺ v = δV_{cc}/V_{cc} = 1.6% (now: 11%)

 $D^{0} \rightarrow \pi^{-} e^{+} \nu$ $\delta V_{cd} / V_{cd} = 1.7\% \text{ (now: 7\%)}$

Use CLEO-c validated lattice to calculate B semileptonic form factor \Rightarrow B factories can use B $\rightarrow \rho/\pi/\eta/lv$ for precise $|V_{ub}|$ determination.

October 7, 2003

Inclusive Semileptonic Decays

Also can measure B_{SL} to get Γ_{SL} - currently no measurement for D_s

- Significantly improved
 D→ X e spectrum
 possible using tagged D's
- Backgrounds in B→ X I v analyses (b→c→I)
- Test of HQET: D⁰, D⁺, D_s⁺ same to few %
 - D_s and D^+ weak annihilation contribution – a concern for $|V_{ub}|$ from E_l endpoint
 - Inclusive spectra + HQET used for |V_{cb}| from b→c lv

Strong Phases in Hadronic D

- Methods to measure γ in B[±] \rightarrow $\overleftarrow{D}^{0}K^{\pm}$; $\overleftarrow{D}^{0} \rightarrow$ f
- Aided by measurements of strong phases in hadronic D decays:
 - D→many Atwood & Soni PRD 68, 033003
 - D⁰→K*[±]K Rosner & Suprun PRD 68, 054010
- CLEO-c: advantage of quantum coherence:
 ψ(3770) → DD ; J^P=1⁻

October 7, 2003

K*+ & K*- bands

CLEO-c & Unitarity Triangle

- Potential Impact
 - Top: current
 experimental and
 theoretical
 uncertainties
 - Bottom: current experiment with 2% theory uncertainties – perhaps possible with LQCD calibrated with CLEO-c data

October 7, 2003

Potential Impact on V_{CKM}

Current V_{CKM} From direct Measurements -no unitarity imposed

CLEO-c will redefine 2nd generation elements And enable improvements in 3rd generation

Potential Impact on V_{CKM}

Current V_{CKM} From direct Measurements -no unitarity imposed

Future V_{CKM}

CLEO-c will redefine 2nd generation elements And enable improvements in 3rd generation

Summary

- The CLEO detector is state of the art, understood at a precision level, and collecting data in the cc resonance region.
- CLEO has a long history of weak decay and CKM physics interests that will carry over to the CLEO-c program
 - CKM physics
 - semileptonic D decays: spectra, form factors, $|V_{cs}| \& |V_{cd}|$
 - Leptonic decays: $f_D f_{Ds}$ informing B mixing interpretation
 - Enabling measurements of Hadronic D decays
 - Strong Phases to inform γ determinations in B \rightarrow DK
 - Measurement of absolute branching fractions