The CLEO-C

Research Program

Holger Stöck University of Florida

HADRON '03 – X. International Conference on Hadron Spectroscopy

CLEO-c – The Context

The Past	CLEO made major contributions to B/c/t physics. But, with the spectacular success of the B factories, CLEO is no longer taking data at the ; (4S) resonance. Last run was June 25 th , 2001.			
The Present	Flavour Physics is in the "B Factory era" akin to precision Z. Over-constrain CKM matrix with precision measurements. Limiting factor is non-pertubative QCD.			
The Future	LHC may uncover strongly coupled sectors in the physics that lie beyond the Standard Model. The LC may then study them. Strongly-coupled field theories are an outstanding challenge to theoretical physics. Critical need for reliable theoretical techniques & detailed data to calibrate them.			
Example: Lattice QCD	Complete definition of pertubative & non-pertubative QCD. Matured over last decade and can calculate to 1-5% B, D, ;, y			
Charm at threshold can provide the data to calibrate QCD techniques → Convert CESR/CLEO to a charm/QCD factory				

CESR-c/CLEO-c

Charm measurements

CLEO-c: Precise charm absolute branching ratio measurements

Leptonic decays:decay constants fp and f

QCD studies

CLEO-c: Precise measurements of quarkonia spectroscopy

Searches for glue-rich exotic states: Glueballs and hybrids

Probes for Physics beyond the Standard Model

CLEO-c: D-mixing, CP Violation, rare D decays

Goal for the decade:

High precision measurements of all CKM matrix elements & associated phases – over-constrain the "Unitary Triangles" Inconsistencies \rightarrow New Physics !

CKM Matrix Current Status:

Many experiments will contribute:

CLEO-c will enable precise 1st column unitarity test & new measurements at B-Factories/Tevatron to be translated into greatly improved CKM precision

The Cornell Electron Storage Ring

wigglers to

transverse

improve

cooling

Expected machine performance: D E_{beam} ~ **1.2 MeV at J/y**

The CLEO-c Experiment

Holger Stöck – University of Florida

HADRON '03

NEW - Inner Drift Chamber

Holger Stöck – University of Florida

Run Plan

2002 – 2003	Upsilons ~1-2 fb ⁻¹ each at ; (1S), ; (2S), ;	(38	S) , a	and ; (5S)	
Epilogue &	Spectroscopy, matrix elements, G _{ee} , h _b , h _c				
Prologue	Last run of CLEO III @ ; (5S) on March 3 rd 2003				
	y(3770) ~3 fb ⁻¹ (y (3770) \rightarrow DD)				
Year 1	30 million DD events, 6 million <i>tagged</i> D decays			C	
	310 times of MARK III data				
				L	
	Ös ~ 4140 MeV ~3 fb⁻¹			F	
Year 2	1.5 million $D_s \overline{D}_s$ events, 0.3 million <i>tagged</i> D_s decays		≻		
	480 times of MARK III data, 130 times of BES data			U	
				-	
	y(3100) ~1 fb ⁻¹			•	
Year 3	1 billion J/y decays			C	
	170 times of MARK III data, 20 times of BES II data	J			

Holger Stöck – University of Florida

CLEO-c Signature

y(3770) events are simpler than ; (4S) events!

; (4S) event

y(3770) event

 $D^0 \otimes K^- p^+ D^0 \otimes K^+ e^- n$

The demands of doing physics in the 3 - 5 GeV range are easily met by the existing detector

BUT

B factories: 400 fb⁻¹ \rightarrow ~500M cc̄ by 2005 What is the advantage of running at threshold?

- Charm events produced at threshold are extremely clean
- Large cross section, low multiplicity
- Pure initial state: no fragmentation
- Signal/Background is optimum at threshold

- Double tag events are pristine These events are the key to make absolute BR measurements
- Neutrino reconstruction is clean
- Quantum coherence aids D mixing & CP violation studies

Holger Stöck – University of Florida

CLEO-c: potential to set absolute scale for all heavy quark measurements

50 pb⁻¹ \rightarrow ~1,000 events \rightarrow x2 improvement (stat) on D⁺ \rightarrow K⁻ p⁺ p⁺ PDG dB/B

f_{Ds} from Absolute $B(D_s \rightarrow mn)$

Decay	Position	Eporav (Mo\/)	ا (fb ⁻¹)	df / f (%)		
Constant	Reaction		(מו) ב	PDG	CLEO-c	
f _{Ds}	$D_{s}^{+} \rightarrow \mu \nu$	4140	3	17	1.9	
f _{Ds}	$D_s^+ \rightarrow \tau \nu$	4140	3	33	1.6	
f _{D+}	$D^+ \rightarrow \mu \nu$	3770	3	UL	2.3	

Stringent test of theory!

HADRON '03

p_{**p**}

CLEO-c Impact on Semileptonic dB/B

CLEO-c will make significant improvements in the precision with which each absolute charm semileptonic branching ratio is known!

Combine semileptonic and leptonic decays – eliminating V_{CKM} $G(D^+ \rightarrow p \mid n) / G(D^+ \rightarrow \mid n)$ independent of V_{cd} Test rate predictions at ~4% level

> $G(D_s \rightarrow f \mid n) / G(D_s \rightarrow \mid n)$ independent of V_{cs} Test rate predictions at ~4.5% level

Test amplitudes at 2% level

Ctringent test of the smill the smill person

Stringent test of theory - If theory passes test ...

 $D^{0} \rightarrow K^{-} e^{+} n \quad dV_{cs}/V_{cs} = 1.6\%$ (now: 11%) $D^{0} \rightarrow p^{-} e^{+} n \quad dV_{cd}/V_{cd} = 1.7\%$ (now: 7%)

Use CLEO-c validated lattice to calculate B semileptonic form factor Then B factories can use $B \rightarrow r/p/h/ln$ for precise V_{ub} determinat.

Comparison: B Factories & CLEO-c

• DD mixing

Exploit coherence: $\underline{\mathbf{y}}(3770) \rightarrow DD$ (C = -1)for mixing no DCSD $\mathbf{\ddot{O}s} \sim 4140 \rightarrow \mathbf{g}DD$ (C = +1)

D mixing & Double CP Violation suppressed in SM

- all the more reason to measure it

• CP violating asymmetries

Sensitivity: A_{CP} < 0.01 Unique: L = 1, C = -1 CP tag on one side, same CP on opposite side

 $CP=\pm 1 \leftarrow y(3770) \rightarrow CP =\pm 1 = CPV$

Rare charm decays

Sensitivity: 10⁻⁶

Verify tools for strongly coupled theories Quantify accuracy for application to flavour physics

Uncover new forms of matter – gauge particles as constituents

Glueballs G = $|gg \tilde{n}|$ Study fundamentalHybrids H = $|gq\bar{q} \tilde{n}|$ states of the theory

The current lack of strong evidence for these states is a fundamental issue in QCD \rightarrow Requires detailed understanding of the ordinary hadron spectrum in the 1.5 – 2.5 GeV mass range

- Gluons carry color charge \rightarrow They should bind !
- Glueball sightings: MARK III, BES, Crystal Barrel
- But glueballs have been sighted too many times without confirmation

CLEO-c 1st high statistics experiment with modern 4p detector covering the 1.5 - 2.5 GeV mass range

Radiative J/y decays are ideal glue factory anticipate 60 million J/y radiative decays

Example: f (2220) exclusive 700 $f_1(2220) \rightarrow K^+ K^-$ Monte 600 Events / 10 MeV 300 200 Carlo 100 1.8 2.0 2.4 2.5 2.6 1.9 2 1

BES `96: 44 events CLEO-c: 18k events Corroborating checks: Anti-search in gg Search in ; (1S) BESII no longer sees evidence for f_J(2220)

WA 102: (D. Barberis et al., Phys. Lett. B 479 59 (2000)) $\frac{f_0(1370) \to pp}{f_0(1370) \to K\overline{K}} = 2.17 \pm 0.90$ Most comprehensive data set on **pp**, **hh** and KK decay ratios for f_o scalar triplet $\frac{f_0(1370) \to hh}{f_0(1370) \to K\overline{K}} = 0.35 \pm 0.21$ \rightarrow Input for glueball - scalar mixing models $\frac{f_0(1500) \to pp}{f_0(1500) \to hh} = 5.5 \pm 0.84$ (F. Close et al., Eur. Phys. J. C 21 531 (2001)) $\underline{f_0(1500) \rightarrow K\overline{K}} = 0.32 \pm 0.07$ CLEO-c: $f_0(1500) \rightarrow pp$ CLEO-c Mode $\frac{f_0(1500) \to hh'}{f_0(1500) \to hh} = 0.52 \pm 0.16$ $J/y \rightarrow gf_0(1500): f_0(1500) \rightarrow p^+p^-p^+p^-$ 123,000 $\frac{f_0(1710) \to pp}{f_0(1710) \to K\overline{K}} = 0.20 \pm 0.03$ $J/y \rightarrow gf_0(1710): f_0(1710) \rightarrow p^+p^-p^+p^-$ 123,000 $\frac{f_0(1710) \to hh}{f_0(1710) \to K\overline{K}} = 0.48 \pm 0.14$ $J/y \rightarrow gf_0(1710): f_0(1710) \rightarrow pp$ 93,000 $\frac{f_0(1710) \to hh'}{f_0(1710) \to hh} < 0.05(90\% cl)$ $J/y \rightarrow gf_0(1710): f_0(1710) \rightarrow KK$ 250,000

Spectroscopy: Observation of : (1³D₂)

Preliminary results at ICHEP02 Update: More data and better background suppression

$M(_{i}(1^{3}D_{2})) = 10161.1 \pm 0.6 \pm 1.6 \text{ MeV}$

B($i(3S) \rightarrow gg_i(1D) \rightarrow ggggg_i(1S) \rightarrow ggggg|^{+|^-})$ = (2.6 ± 0.5 ± 0.5) 10⁻⁵

Theory = $3.8 \ 10^{-5}$

(Godfrey & Rosner PRD 64 097501 (2001))

B(;(3S) → g;(1D)) x B(;(1D) → h;(1S)) < 2.3 10⁻⁴ B(;(1D₂) → h;(1S)) < 0.25 (90% C.L.)

 $B(i(1D_2) \rightarrow ggi(1S))$

4.9.2003

CLEO III Running at y(3770)

y' spectroscopy

10⁸ decays h_c', h_c ...

t⁺t⁻ at threshold

0.25 fb⁻¹ measure m_t to ± 0.1 MeV heavy lepton, exotics searches

• $\mathbf{L}_{c}\mathbf{L}_{c}$ at threshold

1 fb⁻¹ calibrate absolute $B(L_c \rightarrow pKp)$

R measurements

 $R = s(e^+e^- \rightarrow hadrons)/s(e^+e^- \rightarrow n\bar{n}\bar{n})$ spot checks

Likely to be added to run plan

If time permits

CLEO-c Physics Impact

Crucial Validation of Lattice QCD:

Lattice QCD will be able to calculate with accuracies of 1 - 2%. The CLEO-c decay constant and semileptonic data will provide a "golden" & timely test . QCD & charmonium data provide additional benchmarks.

Holger Stöck – University of Florida

- Knowledge of absolute charm branching fractions is now contributing significant errors to measurements involving b's. CLEO-c can also resolve this problem in a timely fashion.
- Improved knowledge of CKM elements, which is now not very good

PDG	V _{cd}	V _{cs}	V_{cb}	V _{ub}	V_{td}	V _{ts}	
	7%	11%	5%	17%	36%	39%	
CLEO-c	1.7%	1.6%	3%	5%	5%	5%	B Factory/Tevatron
Data and LQCD					-		Data & CLEO-c Lattice Validation

- The potential to observe new forms of matter glueballs & hybrids and new physics – D mixing / CP Violation / rare decays – provides a discovery component to the CLEO-c research program.
- Complementary to Hall D / HESR / BEPCII-BESIII Not in Competition! All experiments are in the late decade & at various stages in the approval process.

The CLEO-c Collaboration

University at Albany, SUNY **Carleton University Carnegie Mellon University Cornell University University of Florida University of Illinois University of Kansas University of Minnesota Northwestern University** University of Oklahoma **University of Pittsburgh Purdue University Rensselaer Polytechnic Institute University of Rochester Southern Methodist University** University of California at Santa Barbara Syracuse University **University of Texas - Pan American** Vanderbilt University Wayne State University