Branching Ratios and Angular Distribution of $B \rightarrow D^*\rho$ Decays

István Dankó

Rensselaer Polytechnic Institute (CLEO Collaboration)

CLEO

July 17, 2003 EPS Int. Europhysics Conference on HEP Aachen, Germany

Outline

- Motivation
- CLEO detector and data
- Event Selection
- Maximum Likelihood Fit
- Results:
 - Branching Fractions
 - Helicity Amplitudes
- Conclusion

EPS Abstract: 119 CLEO Collaboration, S. E. Csorna *et al.*, Phys. Rev. D. **67**, 112002 (2003)

Motivation

- ➤ Hadronic decays are complicated by final-state interactions.
- Factorization hypothesis (FH): the products of two-body B meson decays hadronize independently.
- \succ The validity of the FH has to be tested experimentally.
- If FH is valid then certain 2-body hadronic decays are analogous to similar semileptonic decays:

- Experimental tests:
 - Comparing decay rates,
 - Comparing the polarization of the $B^0 \rightarrow D^{*+}\rho^-$ decay to that of the $B^0 \rightarrow D^{*+}l^-\nu$ decay at the same momentum transfer ($q^2=M_{\rho}^2=M_{W}^2$).

J. Körner and G. Goldstein, Phys. Lett 89B, 105 (1979)

$B \rightarrow D^* \rho$ Decay

B

$$B^{-} \rightarrow D^{*0} r^{-}$$

- Color-enhanced diagram (a₁)
- Color-suppressed diagram (a₂)

 $\overline{B}{}^{\scriptscriptstyle 0} \to D^{*_+} r^-$

• Color-enhanced diagram (a₁)

Relative effective coupling strength in BSW model:

$$\frac{Br(B^{-} \to D^{*0} \mathbf{r}^{-})}{Br(\overline{B}^{0} \to D^{*+} \mathbf{r}^{-})} \approx (1 + 0.75a_{2} / a_{1})^{2}$$

M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C 34, 103 (1987)

$B \rightarrow D^*\rho$: Angular Distribution

Three possible helicity final states $(P \rightarrow VV \text{ decay})$:

$$|0,0\rangle \sim \frac{3}{2\sqrt{2p}} \cos \boldsymbol{q}_{D^*} \cos \boldsymbol{q}_r$$
$$|1,1\rangle \sim \frac{3}{4\sqrt{2p}} \sin \boldsymbol{q}_{D^*} \sin \boldsymbol{q}_r e^{ic}$$
$$|-1,-1\rangle \sim \frac{3}{4\sqrt{2p}} \sin \boldsymbol{q}_{D^*} \sin \boldsymbol{q}_r e^{-ic}$$

Angular distribution is described by the coherent sum of the three helicity states:

$$\frac{d^{3}\Gamma}{d\cos\boldsymbol{q}_{D^{*}}d\cos\boldsymbol{q}_{r}d\boldsymbol{c}} = \left|H_{0}\right|\left|0,0\right\rangle + H_{+}\left|1,1\right\rangle + H_{-}\left|-1,-1\right\rangle\right|^{2} = \mathcal{A}(\boldsymbol{q}_{D^{*}},\boldsymbol{q}_{r},\boldsymbol{c})$$

 H_0, H_+, H_- : complex helicity amplitudes (H=|H|e^{i\alpha})

- Previous CLEO measurements:
 - Phys. Rev. D **50**, 43 (1994): 0.89 fb⁻¹ data, $(\cos\theta_{D^*}, \cos\theta_{\rho})$
 - CLEO CONF 98: $3.1 \text{ fb}^{-1} \text{ data, } (\cos \theta_{D^*}, \cos \theta_{\rho}, \chi)$

CLEO detector and data sample

- The data were collected by the CLEO II/II.V detector at the Cornell Electron Storage Ring (CESR).
- ➤ CLEO II:
 - Tracking Chambers (1.5T B, 95% 4π),
 - TOF,
 - CsI EM Calorimeter (98% 4π),
 - Muon detectors (85% 4π)
- ➤ CLEO II.V:
 - Si Vertex Detector,
 - He-Propane DR gas.

Event reconstruction and selection criteria

$$B^{-} \to D^{*0} \mathbf{r}^{-} \qquad \overline{B}^{0} \to D^{*+} \mathbf{r}^{-} \qquad \downarrow D^{0} \mathbf{p}^{0} (62\%) \qquad \stackrel{\overline{B}^{0}}{\longrightarrow} D^{0} \mathbf{p}^{+} (68\%) \qquad D^{0} \to \begin{cases} K^{-} \mathbf{p}^{+} & (3.8\%) \\ K^{-} \mathbf{p}^{+} \mathbf{p}^{0} & (13\%) \\ K^{-} \mathbf{p}^{+} \mathbf{p}^{-} \mathbf{p}^{+} (7.5\%) & \mathbf{p}^{0} \to \mathbf{g}\mathbf{g} \end{cases}$$

- Charge track selection:
 - If p > 250 MeV:
 - Originate from interaction point and well measured
 - dE/dx consistent with K or π hypothesis within 2.5 σ
 - No lepton
 - $\ If \ p < 250 \ MeV \ (from \ D^* \ and \ D^0)$
 - Only loose requirement of consistency with originating from interaction point
- π^0 selection:
 - Photon pair in barrel calorimeter
 - $E_{\gamma} > 30-65$ MeV (mode dependent)
 - $\mid \dot{M}_{\gamma\gamma} M_{\pi0} \mid < 2.5\sigma$

- D⁰ selection:
 - $| M_{K(n\pi)} M_{D0} | < 2.5 \sigma$
 - $D^0 \rightarrow K^- \pi^+ \pi^0$: densely populated region of the Dalitz plot
- D^{*0} and D^{*+} selection:
 - $|\Delta M \Delta M_{PDG}| < 2.5\sigma$ $(\Delta M = M_{D^*-} M_{D0})$
- ρ^{-} selection:

$$- | M_{\pi\pi} - M_{\rho} | < 150 \text{ MeV/}c^2$$

• B selection:

$$-\left|\sum E_{i}-E_{beam}\right| < 2.5 \mathbf{S}_{\Delta E}$$

- Background suppression:
 - Fox-Wolfram moment $R_2 < 0.5$
 - $|\cos \theta_{\rm S}| < 0.7-0.9$
 - $|\cos \theta_{\rm B}| < 0.95$

Maximum Likelihood Fit

$$\prod_{j=1}^{3} \frac{e^{-\boldsymbol{n}_{j}} \boldsymbol{n}_{j}^{n_{j}}}{n_{j}!} \prod_{i=1}^{n_{j}} \frac{n_{j}^{S} P_{ji}^{S} (\boldsymbol{M}, \boldsymbol{m}, \cos \boldsymbol{q}_{D^{*}}, \cos \boldsymbol{q}_{r}, \boldsymbol{c}) + n_{j}^{B} P_{ji}^{B} (\boldsymbol{M}, \boldsymbol{m}, \cos \boldsymbol{q}_{D^{*}}, \cos \boldsymbol{q}_{r}, \boldsymbol{c})}{n_{j}^{S} + n_{j}^{B}}$$

- Unbinned maximum likelihood fit:
 - $v_j = n_j^{S} + n_j^{B}$ number of signal and background events in the jth D⁰ decay mode,
 - Probability density function (pdf):

 $P(M,m,\cos\boldsymbol{q}_{D^*},\cos\boldsymbol{q}_r,\boldsymbol{c}) = \mathbf{M}_B(M)\mathbf{M}_r(m)\mathbf{A}(\cos\boldsymbol{q}_{D^*},\cos\boldsymbol{q}_r,\boldsymbol{c})$

Signal pdf:

M_B: Gaussian distribution for $M = \sqrt{E_{beam}^2 - p_B^2}$

- M_ρ: Breit-Wigner with Blatt-Weiskopf form-factor
- A: angular distribution corrected by detector acceptance

Background pdf: M_B : ARGUS-type function M_{ρ} : flat distributionA : 2nd order polynomials in $\cos\theta_{D^*}$ and $\cos\theta_{\rho}, 1^{st}$ order polynomialof $\cos(\chi + \chi_0))$

> Two-step fit:

- For signal and background and mass distribution parameters (no angular part);
- For helicity amplitudes (signal, background and mass parameters are fixed).

Branching Ratio

> To extract number of signal and background events: maximum likelihood fit to all events with $5.2 < M_B < 5.3 \text{ GeV/c}^2$ (angular distribution ignored)

Branching Ratio

Comparison with previous results:

> BSW effective couplings: $\frac{Br(B^- \to D^{*0} \mathbf{r}^-)}{Br(\overline{B}^0 \to D^{*+} \mathbf{r}^-)} \approx (1 + 0.75a_2 / a_1)^2$

$$a_2 / a_1 = 0.21 \pm 0.03 \pm 0.05 \pm 0.04 \pm 0.04$$

3rd syst. error is from f₊₋/f₀₀=1.072±0.045±0.027±0.024 (PDG 02)

Helicity Amplitudes

> Maximum likelihood fit including events with $5.27 < M < 5.30 \text{ GeV/c}^2 \text{ only}$:

- $-n_i^S$, n_i^B (scaled) and mass distribution parameters are fixed,
- helicity parameters ($|H_+|$, $|H_-|$, $\alpha_+ \alpha_0$, $\alpha_- \alpha_0$) are allowed to float in the fit ($|H_0|^2 + |H_+|^2 + |H_-|^2 = 1$, and $\alpha_0 = 0$),
- Detector acceptance depends on the polarization (angular distribution) due to detector smearing ⇒ needs iteration until helicity amplitudes converge.

Helicity Amplitudes

→ Helicity amplitudes (H=|H|e^{iα}) $|H_0|^2 + |H_+|^2 + |H_-|^2 = 1$

	$B^- \rightarrow D^{*0} \rho^-$	${\rm B^0} ightarrow {\rm D}^{*+} ho^-$
$ H_0 $	$0.944 \pm 0.009 \pm 0.009$	0.941±0.009±0.006
$ \mathbf{H}_{+} $	0.122±0.040±0.010	0.107±0.031±0.011
α_{+}	1.02±0.28±0.11	1.42±0.27±0.04
H_	0.306±0.030±0.025	0.322±0.025±0.016
α_	0.65±0.16±0.06	0.31±0.12±0.04

Systematic uncertainties:

- Acceptance parametrization
- Detector smearing
- Background level/shape (dominant)
- Non-resonant $\pi^-\pi^0$ contribution
- Polarization dependence on $m_{\pi\pi}$

Non-trivial helicity amplitude phases (α_+ , α_-) Significance:

$$B^{-} \rightarrow D^{*^{0}} \mathbf{r}^{-}:3.19\mathbf{s}$$

 $\overline{B}^{0} \rightarrow D^{*^{+}} \mathbf{r}^{-}:2.75\mathbf{s}$

- Indication of FSI
- Important for direct CPV in B decay

Longitudinal Polarization

Longitudinal polarization:

$$\frac{\Gamma_{L}}{\Gamma} = \frac{|H_{0}|^{2}}{|H_{0}|^{2} + |H_{+}|^{2} + |H_{-}|^{2}}$$

$$\frac{\Gamma_L}{\Gamma} \left(\overline{B}^0 \to D^{*+} \mathbf{r}^- \right) = 0.885 \pm 0.016 \pm 0.012$$
$$\frac{\Gamma_L}{\Gamma} \left(B^- \to D^{*0} \mathbf{r}^- \right) = 0.892 \pm 0.018 \pm 0.016$$

B⁰→D*⁺ρ'⁻: CLEO Coll., PRD 64, 092001 (2001); B⁰→D*⁺D_S*⁻: CLEO Coll., PRD 62, 112003 (2000)

Conclusion

- ► CLEO has measured the branching ratio and helicity amplitudes of the decays $B^- \rightarrow D^{*0}\rho^-$ and $B^0 \rightarrow D^{*+}\rho^-$.
- Calculated the ratio of effective coupling constants a₂/a₁ and the degree of longitudinal polarization.
- ► The fraction of longitudinal polarization for $B^0 \rightarrow D^{*+}\rho^-$ decay confirms the validity of the factorization hypothesis at relatively low q²:

$$\frac{\Gamma_{L}}{\Gamma}(\overline{B}^{0} \to D^{*+} \mathbf{r}^{-}) = \frac{\Gamma_{L}}{\Gamma}(\overline{B}^{0} \to D^{*+} \ell^{-} \mathbf{n})\Big|_{q^{2} = M_{r}^{2}}$$

- ► Measurement of the helicity amplitudes indicates a strong possibility of nontrivial helicity amplitude phases which would arise from final-state interactions (indication of FSI has been reported in $B \rightarrow J/\psi K^*$ by CDF (PRL 85, 4668 (2000) and $B \rightarrow D\pi$ by CLEO (PRL 88, 062001 (2002))
- CLEO Collaboration, Phys. Rev. D 67, 112002 (2003)