Rare $B \rightarrow$ baryon decays

Jana Thayer University of Rochester CLEO Collaboration EPS 2003

• Motivation

Baryon production in B decays

• Semileptonic B decays to ep final states

 $B \rightarrow \bar{p}e^{-}\bar{v}_e X$ (Abstract: 141)

• Baryon-containing radiative penguin decays: $B \rightarrow X_s$ (baryons) γ (Abstract: 121)

$$B^- \rightarrow \Lambda \bar{p} \gamma$$

$$B^- \rightarrow \Sigma^0 \bar{p} \gamma$$

Conclusions

Baryon production in B decay

Why B $\rightarrow \bar{p}e^-\bar{v}_eX$?

- Semileptonic B decays distinguish between internal and external W emission
- There is *no positive evidence* for baryons in semileptonic B decays:
 - $B^- \rightarrow \Lambda_c e^-$ anything < 3.2 × 10⁻³ [1]

− B⁻ →Λ_c⁺
$$\bar{p}e^{-}v_{e} < 1.7 \times 10^{-3}$$
 [2]

- B⁻ →
$$\bar{p}e^{-}\bar{\nu}_{e}X < 1.6 \times 10^{-3}$$
 [3]

• BUT, kinematic argument against baryon production in $b \rightarrow c l \nu$

[1] = PDG 2000 [2] = CLEO II, limit using full reconstruction on $\Lambda_c \rightarrow pK^-\pi^+$ [3] = ARGUS

Why $B \rightarrow X_s(baryon)\gamma$?

Experimental technique: $B^- \rightarrow \bar{p}e^-\bar{v}_e X$

<u>Technique:</u> Study angular distribution between electrons and antiprotons to search for semileptonic baryon decays from B mesons.

Partially reconstruct the decay $B \rightarrow \bar{p}e^{-}\bar{v}_{e}X$:

- Identify hadronic events with an e^- (0.6 GeV < p_e < 1.5 GeV) and \bar{p} (0.2 GeV < $p_{\bar{p}}$ < 1.5 GeV) emerging promptly from the B
- Examine angular distributions between e⁻ and \bar{p} θ = the angle between the electron and the antiproton
- Use the difference between the signal and background shapes in $cos(\theta)$ to fit for the amount of signal

e-/p̄ angular distributions

Yield: $B^- \rightarrow \bar{p}e^-\nu_e X$

Upper limit: $BF(B^- \rightarrow \overline{p}e^-\overline{v}_eX) < 5.9 \times 10^{-4}$

Implications for $B \rightarrow Xe_V$

[1] CLEO (1996) [2] PDG 2000 CLEO B \rightarrow Xev measurement: BF(B \rightarrow Xev) = (10.49 ± 0.17± 0.43)% [1] Limit on B $\rightarrow \bar{p}e^-\bar{v}_eX$: BF(B⁻ $\rightarrow \bar{p}e^-\bar{v}_eX$) < 5.9×10⁻⁴ BF(B \rightarrow baryon): BF(B \rightarrow p/ \bar{p} anything) = (8.0 ± 0.4)% [2]

Limit on $B \rightarrow \overline{p}e^{-}\overline{v}_{e}X$ is a limit on $e\overline{p}$ final states ONLY. Want limit on $B \rightarrow$ baryon ev - factor of 2 for neutrons: \Rightarrow Upper limit on BF(B \rightarrow baryon ev): $(2 \times (5.9 \times 10^{-4})) \sim 10^{-3}$

 $BF(B \rightarrow baryon e_V) < 1\% \text{ of } BF(B \rightarrow Xe_V)$

 \Rightarrow (B \rightarrow baryon)_{external W} < 1% of B \rightarrow X

... External W emission* does not contribute significantly to baryonic decays of B mesons

* Baryon production at lower vertex via external W emission

Experimental technique: $B^- \rightarrow \Lambda \bar{p}\gamma$

Fully reconstruct events: $B^- \rightarrow \Lambda (\Lambda \rightarrow p\pi^-)\bar{p}\gamma$ Background sources:

- $B\overline{B}$ negligible (smaller than continuum by a factor of 60!)
- Continuum (e⁺e⁻ \rightarrow q \bar{q} , q \bar{q} = u \bar{u} , d \bar{d} , s \bar{s} , c \bar{c})

After shape variable cuts are applied to remove continuum:

For remaining events, feed shape variables into neural net, cut on net output

Obtain signal and background yields in ΔE , M_B signal box

- |∆E| ≤ 0.084 GeV
- $5.272 \le M_B \le 5.288 \text{ GeV/c}^2$

*ISR = Initial State Radiation

ΔE and M_B (beam-constrained mass)

 Υ (4s) ~ 20 MeV above BB threshold.

 \Rightarrow Energy of each candidate B (E_{cand}) is same as beam energy (E_{beam})

Reconstruct B meson candidate, impose the constraint $E_{cand} = E_{beam}$ to form the following standard reconstruction variables:

Beam-constrained mass, M_B $M_B = \sqrt{E_{beam}^2 - p_{cand}^2}$

 Energy Difference, ΔE $\Delta E = E_{cand} - E_{beam} \approx 0$ Resolution: $\sigma_{E} \sim 20-60$ MeV

To find $B\overline{B}$ events, look at M_B distributions for events with $\Delta E \sim 0$

Experimental technique: $B^- \rightarrow \Sigma^0 \bar{p}\gamma$

- Reconstructing $B^- \rightarrow \Sigma^0 (\Sigma^0 \rightarrow \Lambda \gamma) \bar{p} \gamma$ not feasible because of low efficiency and high fake rate
- Instead, preserve all features of $B^- \rightarrow \Lambda \bar{p}\gamma$ analysis and slide the $\Delta E - M_B$ signal box to $-\Delta E$
 - The soft γ is not included in $\Lambda \bar{p}\gamma$, so ΔE will be shifted by the energy of the γ for $\Sigma^0 \bar{p}\gamma$

 $\Delta E = -114 \text{ MeV}$ $\epsilon (B^- \rightarrow \Sigma^0 \bar{p}_{\gamma})_{max} = 0.42 \times \epsilon (B^- \rightarrow \Lambda \bar{p}_{\gamma})_{max}$

Yield: $B^- \rightarrow \Lambda \bar{p}\gamma$ and $B^- \rightarrow \Sigma^0 \bar{p}\gamma$

CLEO II + II.V: $(9.7 \times 10^6 \text{ BB} \text{ events})$

Upper Limit: $B^- \rightarrow \Lambda(\Sigma^0)\bar{p}\gamma$

Efficiency:

Use efficiencies calculated from a signal sample of unpolarized Λ 's and using a P³/M phase space factor (p-wave system) for the $\Lambda \bar{p} (\Sigma^0 \bar{p})$ mass distribution:

 $\epsilon_{1.5 \text{ GeV}} = 10.5\%$ $\epsilon_{2.0 \text{ GeV}} = 12.4\%$

Systematic errors:

Combined systematic error on the efficiency: $\sigma = 8.4\%$ Increase upper limit on BF by 1.28σ

Conservative 90% CL upper limits (including syst. error): $[Br(B^{-} \rightarrow \Lambda \bar{p}\gamma) + 0.3 Br(B^{-} \rightarrow \Sigma^{0} \bar{p}\gamma)]_{1.5 \text{ GeV}} < 3.9 \times 10^{-6}$ $[Br(B^{-} \rightarrow \Lambda \bar{p}\gamma) + 0.3 Br(B^{-} \rightarrow \Sigma^{0} \bar{p}\gamma)]_{2.0 \text{ GeV}} < 3.3 \times 10^{-6}$ $[Br(B^{-} \rightarrow \Sigma^{0} \bar{p}\gamma) + 0.4 Br(B^{-} \rightarrow \Lambda \bar{p}\gamma)]_{1.5 \text{ GeV}} < 7.9 \times 10^{-6}$ $[Br(B^{-} \rightarrow \Sigma^{0} \bar{p}\gamma) + 0.4 Br(B^{-} \rightarrow \Lambda \bar{p}\gamma)]_{2.0 \text{ GeV}} < 6.4 \times 10^{-6}$

Upper Limit on $B \rightarrow X_s(baryon)\gamma$

- What we HAVE is a limit on $BF(B^- \rightarrow \Sigma^0 \bar{p}\gamma + B^- \rightarrow \Lambda \bar{p}\gamma)$
- What we WANT is limit on BF(B \rightarrow X_s γ , X_s containing baryons)
 - Extrapolate from our measured exclusive baryon modes
 - We can use either $B^- \rightarrow \Lambda \bar{p}\gamma$ or $B^- \rightarrow \Sigma^0 \bar{p}\gamma$ to get this limit, but using $B^- \rightarrow \Sigma^0 \bar{p}\gamma$ relies on fewer theoretical assumptions.
- To obtain upper limit on $B \rightarrow X_s(baryon)\gamma$, need to know

$$R_{\Sigma^0 \overline{p} \gamma} = \frac{Br(B \to X_s \gamma, X_s \text{ containing baryons})}{Br(B^- \to \Sigma^0 \overline{p} \gamma) + 0.4 Br(B^- \to \Lambda \overline{p} \gamma)}$$

For $E_{\gamma} > 1.5$ GeV: $R_{\Sigma \bar{p}\gamma} = 12$; For $E_{\gamma} > 2.0$ GeV: $R_{\Sigma \bar{p}\gamma} = 6$

• Limits on $b \rightarrow s\gamma$ decays to baryons:

$$\begin{split} &\mathsf{BF}(\mathsf{B} \to \mathsf{X}_{\mathsf{s}}\gamma, \mathsf{X}_{\mathsf{s}} \text{ containing baryons})_{1.5 \ \mathsf{GeV}} \leq 9.5 \ x \ 10^{-5} \\ &\mathsf{BF}(\mathsf{B} \to \mathsf{X}_{\mathsf{s}}\gamma, \mathsf{X}_{\mathsf{s}} \text{ containing baryons})_{2.0 \ \mathsf{GeV}} \leq 3.8 \ x \ 10^{-5} \end{split}$$

Implications for $b \rightarrow s\gamma$

Recent CLEO b \rightarrow sy measurements: BF(b \rightarrow sy)_{2.0 GeV} = (2.94 ± 0.41± 0.26) x 10⁻⁴ $\langle E_{\gamma} \rangle_{2.0 \text{ GeV}} = 2.346 \pm 0.032 \pm 0.011 \text{ GeV}$ $\langle E_{\gamma^2} \rangle - \langle E_{\gamma} \rangle^2_{2.0 \text{ GeV}} = 0.0226 \pm 0.0066 \pm 0.0020 \text{ GeV}^2$ Limit on b \rightarrow sy from baryons (obtained from the $\Sigma^0 \bar{p}\gamma$ search): BF(B $\rightarrow X_s \gamma$, X_s containing baryons) $\leq 3.8 \times 10^{-5}$ (13%)

Efficiency for b \rightarrow s γ decays to baryons \approx 1/2 that for b \rightarrow s γ to mesons only

Branching Fraction

43%

47%

⇒ Upper limit on correction to BF(b → s γ): $(1/2 \times 13\%) = 6.5\%$

Mean Photon Energy

 $\langle E_{\gamma} \rangle_{\text{baryons}} \approx 2.10 \text{ GeV}$ (250 MeV lower than our published number)

⇒ Upper limit on correction to $\langle E_{\gamma} \rangle$: (1/2 × 13% × 250 MeV) = 16 MeV

Variance in Photon Energy

Estimate the effect of photons missed due to baryons by placing them at 2.1 GeV \Rightarrow Upper limit on correction to $\langle E_{\gamma}^2 \rangle - \langle E_{\gamma} \rangle^2_{2.0 \text{ GeV}}$: 0.0025 GeV²

⇒ Corrections to (b → s_γ) BF, $\langle E_{\gamma} \rangle_{2.0 \text{ GeV}}$, and $\langle E_{\gamma}^2 \rangle - \langle E_{\gamma} \rangle_{2.0 \text{ GeV}}^2$ are less than half the combined stat. \oplus syst. errors quoted.

$$B \rightarrow \bar{p}e^-\bar{v}_e X$$
To be
published
Upper limits at 90% C.L. using 9.7 × 10⁶ BB̄'s:
BF(B $\rightarrow \bar{p}e^-\bar{v}_e X) < 5.9 \times 10^{-4}$

Λ

⇒ External W emission is NOT the dominant mechanism for baryon production in B decays.