Hadronic Transitions among Bottomonium States

David L. Kreinick Cornell University for the CLEO Collaboration

•
$$\Upsilon(3S) \rightarrow \pi \pi \Upsilon(1S)$$

• $\Upsilon(3S) \rightarrow \gamma \chi_{b1}'$
 $\searrow \omega \Upsilon(1S)$

D. Kreinick APS April 2003

Bottomonium Spectrum

- Quantum number conservation (strong, EM)
- Limited Q: γ , $\pi\pi$, 3-6 π , η , ρ , ω , but not KK

D. Kreinick APS April 2003

Dipion Mass Spectra Status: 1994

----- P. Moxhay, PRD <u>39</u>, 3497 (1989) virtual BB*

D. Kreinick APS April 2003

Event Criteria - Inclusive

Cuts as few and simple as possible $\pi^+\pi^-$ Tracks

- Pπ < 800 MeV/c
- Both tracks originate in beam spot
 - $\pm 3mm$ in $r\phi$, ± 30 mm in Z
- $|z_0^+ z_0^-| < 2mm tight!$

$$\begin{split} \mathsf{M}_{\pi\pi^2} &= (\ \mathsf{p}^+ + \mathsf{p}^- \)^2 \\ \mathsf{M}_{\mathsf{recoil}}^2 &= \{ (\mathsf{M}_{\Upsilon(3\mathrm{S})}, 0, 0, 0) \ - (\ \mathsf{p}^+ + \mathsf{p}^- \) \}^2 \end{split}$$

poorer resolution

D. Kreinick APS April 2003

Event criteria - Exclusive

 $Y(3S) \rightarrow \pi \pi \Upsilon(1S)$

$$\longrightarrow$$
 e⁺e⁻ or $\mu^+\mu^-$

Leptons

- p_l > 4.5 GeV/c
- 9.3 < m_{//} < 9.55 GeV

$\pi^+\pi^-$

- Same vertexing as inclusive
- $p_{\pi\pi}$ not aligned with either lepton (to reject γ conversions)

 $\pi^0\pi^0$

- E_{γ} > 30 MeV for each γ in π^{0}
- No γ in barrel-endcap transition region
- |m_{γγ} 135 MeV| < 20 MeV
 p_π⁰ < 750 MeV/c
- M_{ππ} < 900 MeV
- $|p_{\ell\ell} . p_{\pi\pi}| > 0.9$

Mass recoiling against $\pi\pi$ > 9 GeV No particle ID!

D. Kreinick APS April 2003

Mass Recoiling against $\pi\pi$

APS April 2003

7

$\pi\pi$ Mass Distribution

Fishing Expedition

Running at Υ (3S), tag with Υ (1S) to dileptons and seek resonances in $\pi^+\pi^-\pi^0$

Criteria: 4 or 5 total charged tracks

- 2 lepton candidate tracks, +- charge
 - p_l>4 GeV/c
 - 9.3 < M_{//} < 9.6 GeV
- 2 pion candidate tracks, +- charge
 - p<0.75 GeV/c
 - vertexing cuts

No particle ID

• 2 add'l showers make π^0 with $\chi^2 < 10$ for a constrained fit to m $_{\pi}$ (1 DOF)

$\Upsilon(3S) \rightarrow \Upsilon(1S) \otimes X$

Bottomonium Spectrum

Backgrounds

Four possible sources of bkgnd $\gamma \pi^0 \pi^+ \pi^- \ell^+ \ell^-$

1) $\Upsilon(3S) \rightarrow \gamma \chi_{b}' \rightarrow \gamma \gamma \Upsilon(2S) \rightarrow \gamma \gamma \pi^{+}\pi^{-}\Upsilon(1S)$

- 2) $\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(2S) \rightarrow \pi^+\pi^-\gamma\chi_b \rightarrow \pi^+\pi^-\gamma\gamma$ $\Upsilon(1S)$ with an additional fake γ
- 3) $\Upsilon(3S) \rightarrow \pi^0 \pi^0 \Upsilon(2S) \rightarrow \pi^0 \pi^0 \pi^+ \pi^- \Upsilon(1S)$
- 4) $\Upsilon(3S) \rightarrow \pi^+\pi^-\Upsilon(2S) \rightarrow \pi^+\pi^-\pi^0\pi^0\Upsilon(1S)$ with one of the π^0 photons lost

 $\pi^{+}\pi^{-}$ come from dipion cascades from $\Upsilon(2S)$ or $\Upsilon(3S)$, so reject events whose $\pi^{+}\pi^{-}$ recoil mass is consistent with $\Upsilon(3S) \rightarrow \pi^{+}\pi^{-}\Upsilon(2S)$ or $\Upsilon(2S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S)$

Monte Carlo estimates < 1.1 bkg event remains at 90% C.L. after this cut

 γ spectrum: additional cuts for cleanliness

- Constrained fit for m_{ω} has $\chi^2 < 10$ (1 DOF)
- 9.44 < Mass recoiling against ω < 9.48 GeV
- Energy conserved within 100 MeV

• At most one extra γ in event D. Kreinick APS April 2003

Photon Spectrum

Branching Ratio

- ASSUME all the signal is χ_{b1} '
- MC estimate efficiency 6.42%
- signal is 36±6 events
- subtract 1.1 event for background

$$B(\Upsilon(3S) \to \gamma \chi_{bJ}' \to \gamma \omega \Upsilon(1S) \to \gamma \pi^{+} \pi^{-} \pi^{0} \ell^{+} \ell^{-}) = (1.15 \pm 0.20) \times 10^{-4}$$

Divide this by the branching ratios for $\Upsilon(3S) \rightarrow \gamma \chi_{b1}', \omega \rightarrow \pi^+ \pi^- \pi^0$, and $\Upsilon(1S) \rightarrow e^+ e^-$ plus $\Upsilon(1S) \rightarrow \mu^+ \mu^-$

 $B(\chi_{b1}' \rightarrow \omega \Upsilon(1S)) = (2.3 \pm 0.4)\%$ with a systematic error smaller than the statistical error, except for the assumptions

Summary

 CLEO-III has measured the distribution of dipion masses in

> $\Upsilon(3S) \rightarrow \pi^+ \pi^- \Upsilon(1S)$ and $\Upsilon(3S) \rightarrow \pi^0 \pi^0 \Upsilon(1S)$

The order of magnitude greater statistics should help differentiate among models

• CLEO-III has observed a new decay mode of χ_{b1} ' or χ_{b2} ' most naturally explained as

 $\chi_{bJ}' \rightarrow \omega \Upsilon(1S)$ with a branching ratio of about 2%