

Recent results on B meson decays from CLEO

 $Y(4S) \rightarrow B\overline{B}$

Alan Weinstein, Caltech Representing the CLEO Collaboration

CLEO $e^+e^- \rightarrow Y(4S) \rightarrow BB$

→Hadrons)(nb)

σ(e⁺e

- CESR symmetric e^+e^- storage ring
 - operates on Y(4S)
 - BB produced near threshold
- Data sets
 - CLEO II, II.V
 - ~ 9.1 fb⁻¹ on Y(4S) => 9.7 x 10⁶ BB Events
 - ~ $4.4 \text{ fb}^{-1} \text{ off } Y(4S)$
 - CLEO III
 - ~ 6.9 fb⁻¹ on Y(4S) => 7.4 x 10^6 BB Events
 - ~ 2.3 fb⁻¹ off Y(4S)

Rich B decay phenomenology

- b \rightarrow c 1 v inclusive (V_{cb}, HQET parameters) • B \rightarrow X_c 1 v exclusive s' (V_{cb}, form factors) • b \rightarrow u 1 v inclusive (V_{ub}) c • B \rightarrow X_u 1 v exclusive (V_{ub}, form factors) • B \rightarrow X_c hadrons exclusive (tests of factorization, charm sd counting, ...) • B \rightarrow X_c⁰ (n π)⁰ exclusive
 - (color-suppressed)
 - B \rightarrow charmless hadrons (b \rightarrow u, b \rightarrow sg, b \rightarrow dg, direct CPviolation, etc)
 - $b \rightarrow s\gamma$ inclusive
 - $B \rightarrow s\gamma$ exclusive

•

Measuring CKM with B decays

Goals for the decade:

Precision measurements of magnitudes and phases of V_{ub} , V_{cb} , V_{ts} , V_{td} . Rates determine magnitudes; CP violation measures phases. Test SM description of CP violation and search for new physics.

Alan Weinstein, Caltech, at La Thuile, March 2002

Determination of V_{cb} & V_{ub} from semileptonic B decay

- Semileptonic decays are used to determine the quark couplings as they are simple: strong interaction is confined to the lower vertex
- **Gµ¹/₂V**_{cb}¹/₂ for final states with charm (D /D* etc.)
- Gμ¹/2V_{ub}¹/2 for final states without charm
 (r/p/h...)
- We observe hadrons rather than quarks. theory is needed to relate the underlying quark decay to hadronic decay properties (quark-hadron duality)

Semileptonic decay of meson containing heavy quark:

• Two approaches: inclusive $B \rightarrow X_c \ \ell \ \mathbf{n}$, $X_u \ \ell \ \mathbf{n}$ or exclusive $B \rightarrow \mathbf{D}^* \ \ell \ \mathbf{n}$, $(\rho/\pi/\eta) \ \ell \ \mathbf{n}$

Topics discussed here

- E_{γ} spectrum of $B \rightarrow X_{s}\gamma$
- Hadronic moments in $B \rightarrow X_c \, l \, v$
- Inclusive semileptonic rate and $|V_{cb}|$
- Lepton endpoint and $|V_{ub}|$
- $|V_{cb}|$ from $B \rightarrow D^* l \nu$
- Future work

Inclusive EM penguins: $b \rightarrow s\gamma$

- No tree level FCNC in SM
- Sensitive to new physics in loop H⁻...
- Calculated to NLO in SM BR($B \rightarrow X_s \gamma$) = (3.3-3.7) × 10⁻⁴
- Measure: inclusive γ spectrum
- Past: Branching ratio & Acp.
- Now: (+ shape of **g**spectrum)

Alan Weinstein, Caltech, at La Thuile, March 2002

Mean : $\langle Eg \rangle \sim m_b/2$ Width: non-perturbative interactions between b quark and light degrees of freedom in hadron (Fermi motion) Both quantities needed for extraction of V_{cb} & V_{ub} from B \rightarrow Xlv

$b \otimes s \gamma$: Measuring the γ spectrum

- Signal: isolated $\gamma 2.0 < E \gamma < 2.7 \text{ GeV}$
- In principle: Measure γ spectrum for ON and OFF resonance and subtract
- But: $b \otimes sg$ isn't only source of γ
- Background from $p^{0} \rightarrow \gamma \gamma \eta \rightarrow \gamma \gamma$ Veto photons making p^{0} , η with other γ 's Model remainder from data and subtract, significantly reducing model dependence
- Huge continuum background: reduce by:
 - Event shape cuts
 - leptons (tags BB event)
 - Identify (Kn π) hadronic system recoiling against γ

VS.

Alan Weinstein, Caltech, at La Thuile, March 2002

$B \otimes X_s g$ results

Alan Weinstein, Caltech, at La Thuile, March 2002

b @ sg photon spectrum

- At quark level, spectrum is a sharp line
 - broadened by b quark Fermi motion
 - broadened by varying recoil mass (glue)
 - smeared by B boost (known)
 - smeared by resolution (small)
- Fit to theory spectra propogated through MC:
 - Ali-Greub model
 - Kagan-Neubert theory
- Moments of the distribution

$$\langle E_g \rangle = 2.346 \pm 0.032 \pm 0.011 \text{ GeV}$$

 $\langle E_g^2 \rangle - \langle E_g \rangle^2 = 0.0226 \pm 0.0066 \pm 0.0020 \text{ GeV}^2$

Subtract BB bkgd:

 $\langle E_g \rangle \sim m_b/2$ effectively measures HQET parameter $\Lambda \sim (m_B - m_b) \sim energy$ of light degrees of freedom in meson

 $\langle E_{\gamma} \rangle = \frac{M_B}{2} \begin{bmatrix} 1 - .385 \frac{\alpha_s}{\pi} - .620 \beta_0 (\frac{\alpha_s}{\pi})^2 - \frac{\bar{\lambda}}{M_B} (1 - .954 \frac{\alpha_s}{\pi} - 1.175 \beta_0 (\frac{\alpha_s}{\pi})^2) \\ - \frac{13\rho_1 - .33\rho_2}{12M_B^3} - \frac{\mathcal{T}_1 + 3\mathcal{T}_2 + \mathcal{T}_3 + 3\mathcal{T}_4}{4M_B^3} - \frac{\rho_2 C_2}{9M_B M_D^2 C_7} + \mathcal{O}(1/M_B^4) \end{bmatrix}, \quad \overline{\Lambda} = (0.35 \pm 0.08 \pm 0.10) \,\text{GeV}$

Search for $B \to K^{(*)} \ell^+ \ell^-$

- Rare penguin FCNC (V_{ts}* V_{tb}, like *b* ® *sg*)
- **SM BR** ~ $10^{-6} 10^{-7}$
- Probes more operators in OPE expansion (C₇, C₉, C₁₀)
- More sensitive to SUSY, other beyond-SM contributions
- Must suppress K^(*) y^(c), continuum, BB semileptonic

BR(K $\ell^+ \ell^-$) < 1.7 **10**⁶ (3 events)

 $BR(K^* \ell^+ \ell^-) < 3.3$ **10**⁶ (4 events)

(both at 90% CL)

Within 50% of SM predictions

CLEO PRL 87:181803, 2001

Alan Weinstein, Caltech, at La Thuile, March 2002

Extracting V_{cb} from inclusive semileptonic decay rate

• Semileptonic decay of a meson containing a heavy quark can be rigorously (in QCD) related to free quark decay (the spectator model) by HQET+OPE, a controlled expansion

in **a**_s and 1/M_{B.} (Falk, Ligeti, Luke, Wise, Savage, Manohar, Bauer, Bigi). Schematically:

$$\Gamma(B \to X_c \ell \mathbf{n}) \propto |V_{cb}|^2 \frac{G_F^2 M_B^5}{192 \mathbf{p}^3} \left[1 + f_1 \left(\frac{\overline{\Lambda}, \overline{\Lambda} \mathbf{a}_s}{M_B} \right) + f_2 \left(\frac{(\mathbf{l}_1, \mathbf{l}_2, \overline{\Lambda}^2)}{M_B^2} \right) + O\left(\frac{1}{M_B^3} \right) \right] + rad \ cor...$$

- \blacktriangleright **L** ~ (M_B M_b) ~ energy of light degrees of freedom in meson
- I₁ ~ average kinetic energy of b quark in B meson
- ▶ 1₂ » 0.12 ~ hyperfine interaction M(B*)-M(B)
- Measure inclusive rate $\mathbf{G}(\mathbf{B} \otimes X_c \ \ell \mathbf{n}) = \mathbf{BR} / \mathbf{t}_{\mathbf{B}}$
 - BR(B $\otimes X_c \ell$ n) = (10.39 ±0.46)%

- Lifetime $t(B^{\pm}) = (1.653 \pm 0.028)$ ps; $t(B^{0}) = (1.548 \pm 0.032)$ ps (PDG2000)

- Ratio on Y(4S): f_{+} / f_{00} = 1.04 ± 0.08
- Measure $\langle \mathbf{E}_{\mathbf{g}} \rangle$ in $b \otimes s \mathbf{g}$, use theory to extract **L**
- Measure moments of $M(X_c)$ distribution, use theory to extract l_1
- From the above formula, extract $|V_{cb}|$
- Estimate errors due to neglected $1/M_B^3$ terms, scale of \mathbf{a}_S , etc.
- All of this relies on assumption of quark-hadron duality

(CLEO 1996)

(CLEO 2001)

$B \otimes X_c \ell n$ Hadronic Mass Moments

Want $B \otimes X_c l \mathbf{n}$ hadronic mass distribution

- Identify lepton (1.5 GeV < P < 2.5 GeV)
- Hermiticity: p_v
- Calculate hadronic recoil mass from $\ell\nu$

$$M_{X}^{2} = M_{B}^{2} + M_{\ell n}^{2} - 2(E_{B}E_{\ell n} - P_{B}P_{\ell n}\cos q_{B-\ell n})$$

- Drop $\cos q_{B-\ell n}$ because P_B is small $\widetilde{M}_X^2 = M_B^2 + M_{\ell n}^2 - 2E_B E_{\ell n}$
- Fit spectrum with
 - B® Dln
 - $B \otimes D^* l \mathbf{n}$
 - $B \otimes X_H l \mathbf{n}$ (X_H = D**, D^(*)n π ... ISGW2, Goity-Roberts, for X_H)
- Find moments of true M_X^2 spectrum

CLEO PRL 87:251808, 2001

Alan Weinstein, Caltech, at La Thuile, March 2002

Observed recoil mass: ON-OFF

$\overline{\Lambda}$ and \boldsymbol{l}_1

	$b \rightarrow s\gamma$ 1st moment :	$f(\overline{\Lambda})$
$\begin{array}{c} 0.1\\ \lambda_1\\ 0 \end{array}$	€xperime Total	ental
-0.1 -		2001
-0.2 -		
-0.3 - -0.4 -	MF. Nos	
-0.5 -		
0 0.1	0.2 0.3 0.4 0.5 0.6 0.7 0.	8 0.9 1 A

- b \rightarrow s γ measures Λ , independently of λ_1 • $\langle \mathbf{M}^2(\mathbf{X}) \rangle$ measures a l
- <M²(X_c)> measures a linear combination of Λ , λ_1
- Higher moments are less reliable in the theory

• Action is in
$$\Lambda$$
- λ_1 plane

$$\overline{\Lambda} = 0.35 \pm 0.07 \pm 0.10 \text{ GeV}$$

$$I_1 = -0.238 \pm 0.071 \pm 0.078 \text{ GeV}^2$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$Moments \quad 1/\overline{M}_B^3$$

$$\cdot \qquad (v \text{ recon, non-res models})$$

$$B \rightarrow Xlv \text{ 1st moment } f(I_1 \Lambda)$$

Extraction of $|V_{cb}|$

Measured Γ_{sl}

 $\mathcal{B}(B \otimes X_c \ell \mathbf{n}) = (10.39 \pm 0.46)\% \text{ [CLEO]}$ $\boldsymbol{t}_{B^+} = (1.653 \pm 0.028) \times 10^{-12} \text{ sec } \text{[PDG]}$ $\boldsymbol{t}_{B^0} = (1.548 \pm 0.032) \times 10^{-12} \text{ sec } \text{[PDG]}$

 $f_{+-}/f_{00} = 1.04 \pm 0.08$ [CLE0] $\Gamma_{s\ell} = (0.427 \pm 0.020) \times 10^{-10} \text{ MeV}$

- A 3.2% measurement!
- Inclusive assumes quark hadron duality.
- Moments can validate inclusive method.
- Inclusive & exclusive methods both needed.
- Agreement: confidence in V_{cb} determination, and good test of quark hadron duality.

Combine with Λ and λ_{1} . $|V_{cb}| = (40.4 \pm 0.9 \pm 0.5 \pm 0.8) \times 10^{-3}$ $\Gamma_{s\ell} = \overline{\Lambda}, I_1 = 1/M_B^3, a_S$ $|V_{cb}| = (40.4 \pm 1.3) \times 10^{-3}$ (3.2% error !) CLEO, PRL 87:251808, 2001 D*Iv LEPWG 39.0±1.9±1.8 D*/v CLEO 46.2+2.4+2.1 XIV LEPWG 40.7±0.5±2.4 X/v CLEO $40.4 \pm 1.0 \pm 0.8$ 35 40 45 50 V_{cb} (10⁻³)

From $|V_{cb}|$ to $|V_{ub}|$

- Why not another expansion in Λ , λ_1 , λ_2 ?
 - Very large $b \rightarrow c$ backgrounds!
 - Only isolate $b \rightarrow u \,\ell v$ in corner of phase space (here, endpoint of lepton momentum)
- Expansion is no longer in $1/M_{\rm B}$:
 - This is a heavy \rightarrow light transition
 - Expansion in: $1/(1-x)M_B$, $x = 2p_\ell/M_B$
- Very sensitive to smearing of spectrum at endpoint!
- Can relate to another heavy \rightarrow light transition: b \rightarrow s γ (Neubert; Liebovich, Low, and Rothstein)
 - Both are smeared by a common non-perturbative light-cone shape function
- Extract shape function from $b \rightarrow s \gamma$
- Use to predict fraction of b → u ℓv rate above experimental lepton momentum cut (and try to make this cut as low as possible!)

The $b \rightarrow u \,\ell \nu$ endpoint

- Use 9.13 fb⁻¹ (ON), 4.35 fb⁻¹ (OFF)
- $2.2 < p_{\ell} < 2.6 \text{ GeV/c}$ (VARY)
- Neural-net continuum subtraction
- Subtract remaining continuum using off-res data
- Shape of b → c ℓv and other B bknds estimated using detailed MC simulation (including PHOTOS for radiation), and subtracted
- Syst error dominated by model uncertainty in B backgrounds

N(B
$$\rightarrow$$
 X_u $\ell \nu$) events = 1901 ± 122 ± 256
Partial branching ratio:
 Δ BR (B \rightarrow X_u $\ell \nu$) (2.2 – 2.6 GeV) = (2.30 ± 0.15 ± 0.35) × 10⁻⁴

Alan Weinstein, Caltech, at La Thuile, March 2002

- From Hoang, Ligeti and Manohar (1999) ("Upsilon Expansion"):
- $|V_{ub}| = [(3.06 \pm 0.08 \pm 0.08) \times 10^{-3}] \times [(B_{ub} / 0.001) \cdot (1.6 \text{ ps})/\tau_B)]^{1/2}$
- Need $B_{ub} \equiv BR (B \rightarrow X_u \,\ell \nu)$ from $\Delta BR (B \rightarrow X_u \,\ell \nu)$
- Determine fraction of B_{ub} in lepton momentum endpoint using $b \to s \, \gamma$
 - Fit light-cone shape function (Kagan-Neubert; 2 parameterizations)
 - Convolute with parton-level $b \rightarrow u \; \ell v$ rate
 - determine fraction $f_u(p)$ for different windows
 - $f_u(p) = 0.130 \pm 0.024 \pm 0.015$ for $2.2 < p_\ell < 2.6$ GeV/c
 - Vary the momentum window: consistent results.
- \Rightarrow BR (B \rightarrow X_u $\ell \nu$) = (1.77 ± 0.29 ± 0.38) × 10⁻³
- $\Rightarrow |V_{ub}| = (4.08 \pm 0.34 \pm 0.44 \pm 0.16 \pm 0.24) \times 10^{-3}$
- Errors: $\Delta BR \quad f_u(p) \quad B_{ub} \rightarrow |V_{ub}| \quad \text{shape fcn}$
- Result assumes quark-hadron duality.

Determination of V_{cb} from Exclusive $B \rightarrow D^* \ell^+ \nu$

- The differential decay rate in $q^2 = m^2(\ell + \mathbf{n})$, or better, the *HQET* variable $w = v_B \cdot v_{D^*} = (m_B^2 + m_{D^*}^2 - q^2)/(2 m_B m_{D^*})$, is $d\mathbf{G}/dw \ (\mathbf{B} \otimes \mathbf{D^*} \ \ell + \mathbf{n}) = (\mathbf{G}_F^2 / 48 \mathbf{p}^2) \ |V_{cb}|^2 \ |\mathbf{F}_{D^*}(w)|^2 \ \mathbf{PS}(w)$
- **PS(w)** contains kinematic factors and is *known*
- $F_{D^*}(w)$ is the form-factor describing the $B \rightarrow D^*$ transition
- There's actually 3 form-factors, but their ratios are measured by CLEO and others, and they boil down to one in *w* (Isgur-Wise function).
- HQS normalizes at zero recoil $(q^2_{max}, w=1)$: as $\mathbf{m}_0 \to \infty$, $F_{D*}(w) \to 1$
- PLAN: measure dG/dw, extrapolate to w=1to extract $F_{D^*}(w) |V_{cb}|^2$
- QCD dispersion relations contsrain the shape of $F_{D*}(w)$, in terms of one parameter:
 - r^2 , the slope at w = 1.
- Use HQET to estimate $F_{D^*}(w=1) = 0.913 \pm 0.042$ Alan Weinstein, Caltech, at La Thuile, March 2002

Isolating $B \rightarrow D^* \ell^+ \nu$

- $B \rightarrow D^{*-} \ell^+ \nu$ Osaka (2000), now also
- $B \rightarrow D^{*0} \ell^+ \nu \text{ Rome (2001)}$
- Use 3.1 fb⁻¹ (ON), 1.6 fb⁻¹ (OFF) systematics limited; use best-studied ~1/3 of CLEO data
- Electrons: $0.8 < p_e < 2.4 \text{ GeV/c}$
- Muons: $1.4 < p_{\mu} < 2.4 \text{ GeV/c}$
- Discriminate signal from backgrounds:
 - Angle between **B** and $D^* \ell$
 - If more than one v missing, can have $|\cos\theta_{B-D^*\ell}| > 1$
- Analysis requires rate vs q^2 or w
 - Fit $\cos\theta_{B-D^*\ell}$ distribution to signal+backgrounds in bins of *w*

$d\Gamma/dw (B \rightarrow D^* \ell^+ v)$

- Extract signal in bins of *w*
- Rate for $B \rightarrow D \ell^+ \nu$ near w=1 is zero; for $B \rightarrow D^* \ell^+ \nu$ it is finite.
- Better D* signal and efficiency for D*+;
 better acceptance at w=1 for D*0
- Integrating over *w*:
- BR(D^{*-} ℓ +n) = (6.09 ± 0.19 ± 0.40)% BR(D^{*0} ℓ +n) = (6.50 ± 0.20 ± 0.44)% G(D^{*} ℓ +n) = (39.4 ± 1.2 ± 2.6) fs⁻¹
- Systematics:
 - Efficiency (slow pions)
 - D*, D branching fractions
 - Backgrounds
 - Form factors

Fit for V_{cb} from $B \to D^* \, \ell \ ^+ \! \nu$

 V_{cb} from $B \rightarrow D^* \ell^+ \nu$

• Comparison with other recent exclusive measurements:

- CLEO includes D*0
- CLEO fits for D^{*}X ℓ ⁺ν component; LEP uses models
- CLEO uses F(1) = 0.913; LEP WG uses 0.88

Alan Weinstein, Caltech, at La Thuile, March 2002

V_{ub} from Exclusive Reconstruction of B ℝ (**p/r/w**) ℓ ⁺v

- CLEO 1996 measured BRs for
 B ® p l +v and (r/w) l +v, reconstructing v from missing E-p
- BR(p ℓ +n) = (1.8 ± 0.4 ± 0.4) · 10⁻⁴ BR(r/w ℓ +n) = (2.5 ± 0.4 ± 0.8) · 10⁻⁴
- $|V_{ub}| = (3.25 \pm 0.30 \pm 0.55)$ 10³

New (2002) analysis uses > 3 × N_{BB}, permitting measurement in bins of q²
Analysis nearing completion
To reduce model dependence of |V_{ub}| result, HQET relates B ® p ℓ +v to D ® p ℓ +v, which will be well measured in CLEO-c

 $B \rightarrow \pi l \nu$ data: $8 < q^2 < 16 \text{ GeV}^2$

More CKM measurements to come

- $B \otimes X_c \ell \mathbf{n}$ inclusive lepton spectrum moments ($\langle E_\ell \rangle$)
 - Another band in $\Lambda \lambda_1$ plane
 - low-background tagged (di-leptons) and high-stat untagged
- *B* ® *Xl***n** inclusive *l***n** distribution (neutrino reconstruction)
 - Simultaneously measure components of $b \otimes c \ell \mathbf{n}$ and $b \otimes u \ell \mathbf{n}$

in full 3-D kinematic space (E_{ℓ} , E_n , q^2)

- Extract $\Lambda / \lambda_{1,}$ from moments of $b \otimes c \ell \mathbf{n}$ and V_{ub} from $b \otimes u \ell \mathbf{n}$ $c
ightarrow c \ell
u, b
ightarrow u \ell
u$ and $b
ightarrow c
ightarrow s \ell
u$

- New measurement of $B(b \otimes s g)$ and $\langle E_{\gamma} \rangle \rightarrow \Lambda (m_b)$ $B(b \otimes s g) = (3.21 \pm 0.43 \pm 0.32) \cdot 10^{-4}$
- New limits on $B \rightarrow K^{(*)} \ell^+ \ell^-$:

 $B(K \ \ell^+ \ \ell^-) < 1.7 \ 10^{-6}$, $B(K^* \ \ell^+ \ \ell^-) < 3.3 \ 10^{-6}$

- New V_{cb} from moments analysis of b \rightarrow s γ & B \rightarrow Xlv |V_{cb}| = (40.4 ± 1.3) ~ 10⁻³
- New V_{ub} from endpoint of lepton spectrum, where fraction of rate in endpoint constrained by analysis of $b \rightarrow s\gamma$ spectrum. $|V_{ub}| = (4.08 \pm 0.63) \cdot 10^{-3}$
- New V_{cb} from $B \rightarrow D^* l v$

 $|V_{cb}| = (46.4 \pm 1.4 \pm 2.4 \pm 2.1)$ 10⁻³

More results

- New measurement of V_{ub} from exclusive B P l +v and (r/w) l +v coming soon. Also more inclusive V_{cb}, V_{ub}.
- Color-suppressed decays, first observation (hep-ex/0110055 ® PRL): $\mathcal{B}(\overline{B}^0 \to D^0 \pi^0) = (2.74^{+0.36}_{-0.32} \pm 0.55) \times 10^{-4}$ $\mathcal{B}(\overline{B}^0 \to D^{*0} \pi^0) = (2.20^{+0.59}_{-0.52} \pm 0.79) \times 10^{-4}$
- First observation of $B \rightarrow D^{(*)} K^*$ (hep-ex/0112033 ® PRL):

 $\begin{aligned} \mathcal{B}(B^- \to D^0 K^{*-}) &= (6.1 \pm 1.6 \pm 1.7) \times 10^{-4}, \\ \mathcal{B}(\bar{B^0} \to D^+ K^{*-}) &= (3.7 \pm 1.5 \pm 1.0) \times 10^{-4}, \\ \mathcal{B}(\bar{B^0} \to D^{*+} K^{*-}) &= (3.8 \pm 1.3 \pm 0.8) \times 10^{-4}, \\ \mathcal{B}(B^- \to D^{*0} K^{*-}) &= (7.7 \pm 2.2 \pm 2.6) \times 10^{-4}. \end{aligned}$

useful for measuring CKM angle γ

• Many rare B decays observed by CLEO-III. Branching ratios in good agreement with theory. No CPV observed in rates.