Recent results on B meson decays from CLEO

$$
\mathrm{Y}(4 S) \rightarrow B \bar{B}
$$

CLEO $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Y}(4 \mathrm{~S}) \rightarrow \mathrm{BB}$

- CESR - symmetric $e^{+} e^{-}$storage ring - operates on Y(4S)
- BB produced near threshold
- Data sets
- CLEO II, II.V
- $\sim 9.1 \mathrm{fb}^{-1}$ on $\mathrm{Y}(4 \mathrm{~S}) \Rightarrow 9.7 \times 10^{6} \mathrm{BB}$ Events
- $\sim 4.4 \mathrm{fb}^{-1}$ off Y(4S)
- CLEO III
- $\sim 6.9 \mathrm{fb}^{-1}$ on $\mathrm{Y}(4 \mathrm{~S})=7.4 \times 10^{6} \mathrm{BB}$ Events
- $\sim 2.3 \mathrm{fb}^{-1}$ off $\mathrm{Y}(4 \mathrm{~S})$

Rich B decay phenomenology

$$
\Gamma_{q}=\text { decay rate }=\frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{b c}\right|^{2} N_{c} f_{p s}
$$

Other diagrams:

Color-suppressed

annihilation

penguin $b \rightarrow s$

W-exchange

- $\mathrm{b} \rightarrow \mathrm{c} 1 \vee$ inclusive
(V_{cb}, HQET parameters)
- $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{c}} \mathrm{V}$ exclusive (V_{cb}, form factors)
- $\mathrm{b} \rightarrow \mathrm{u} 1 \vee$ inclusive $\left(\mathrm{V}_{\mathrm{ub}}\right)$
- $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} 1 \vee$ exclusive (V_{ub}, form factors)
- $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{c}}$ hadrons exclusive (tests of factorization, charm counting, ...)
- $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{c}}{ }^{0}(\mathrm{n} \pi)^{0}$ exclusive (color-suppressed)
- $\mathrm{B} \rightarrow$ charmless hadrons
($\mathrm{b} \rightarrow \mathrm{u}, \mathrm{b} \rightarrow \mathrm{sg}, \mathrm{b} \rightarrow \mathrm{dg}$, direct CPviolation, etc)
-b \rightarrow s γ inclusive
- $\mathrm{B} \rightarrow \mathrm{s} \gamma$ exclusive

Measuring CKM with B decays

Goals for the decade:
Precision measurements of magnitudes and phases of $\mathbf{V}_{\mathrm{ub}}, \mathbf{V}_{\mathrm{cb}}, \mathbf{V}_{\mathrm{ts}}, \mathbf{V}_{\mathrm{td}}$. Rates determine magnitudes; CP violation measures phases. Test SM description of CP violation and search for new physics.

Determination of $\mathbf{V}_{\mathrm{cb}} \& \mathbf{V}_{\mathrm{ub}}$ from semileptonic B decay

- Semileptonic decays are used to determine the quark couplings as they are simple: strong interaction is confined to the lower vertex
- $\quad \Gamma \propto\left|\mathbf{V}_{\mathrm{cb}}\right|^{2}$ for final states with charm (D /D* etc.)
- $\Gamma \propto\left|\mathbf{V}_{\mathrm{ub}}\right|^{2}$ for final states without charm ($\rho / \pi / \eta \ldots$)
- We observe hadrons rather than quarks. theory is needed to relate the underlying quark decay to hadronic decay properties (quark-hadron duality)

Semileptonic decay of meson containing heavy quark:
-Two approaches: inclusive $\boldsymbol{B} \rightarrow X_{c} \ell \vee, \quad X_{u} \ell \vee$
or exclusive

$$
\boldsymbol{B} \rightarrow \mathbf{D}^{*} \ell v, \quad(\rho / \pi / \eta) \ell v
$$

Topics discussed here

- E_{γ} spectrum of $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma$
- Hadronic moments in $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{c}} 1 \mathrm{v}$
- Inclusive semileptonic rate and $\left|\mathrm{V}_{\mathrm{cb}}\right|$
- Lepton endpoint and $\left|\mathrm{V}_{\mathrm{ub}}\right|$
- $\left|\mathrm{V}_{\mathrm{cb}}\right|$ from $\mathrm{B} \rightarrow \mathrm{D}^{*} 1 \mathrm{v}$
- Future work

$$
\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

Inclusive EM penguins: $b \rightarrow s \gamma$

- No tree level FCNC in SM
- Sensitive to new physics in loop H^{-}...
- Calculated to NLO in SM

$\mathrm{BR}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)=(3.3-3.7) \times 10^{-4}$
- Measure: inclusive γ spectrum
- Past: Branching ratio \& Acp.
- Now: (+ shape of γ spectrum)

Mean: $\langle\mathrm{E} \gamma\rangle \sim m_{b} / 2$
Width: non-perturbative interactions between b quark and light degrees of freedom in hadron (Fermi motion)
Both quantities needed for extraction of $V_{c b} \& V_{u b}$ from $B \rightarrow X l v$

$b \rightarrow s \gamma$: Measuring the γ spectrum

- Signal: isolated $\gamma 2.0<\mathrm{E} \gamma<2.7 \mathrm{GeV}$
- In principle: Measure γ spectrum for ON and OFF resonance and subtract
- But: $b \rightarrow s \gamma$ isn't only source of γ
- Background from $\pi^{0} \rightarrow \gamma \gamma \eta \rightarrow \gamma \gamma$

Veto photons making π^{0}, η with other $\gamma^{\prime} s$ Model remainder from data and subtract, significantly reducing model dependence

- Huge continuum background: reduce by:
- Event shape cuts
- leptons (tags BB event)
- Identify (Kn π) hadronic system recoiling against γ

Expected raw contributions:

vS.

$B \rightarrow X_{s} \gamma$ results

- Full Cleo II + II.V dataset (9.6 M BB)
- BF for $\mathbf{\sim 9 0 \%}$ of spectrum (2.0 GeV cutoff)
- Weight events accd to how consistent they are with $b \rightarrow s \gamma$
- No excess $>2.7 \mathrm{GeV}$ or $<2.0 \mathrm{GeV}$

Theory: (3.3-3.7) $\times 10^{-4}$
(Chetyrkin, Misiak,\& Münz/ Kagan \&Neubert,Gambino\&Misiak)
$\mathrm{E}_{\boldsymbol{y}}(\mathrm{GeV})$
-Expt. \& theory agree
\cdot Expt. error close to theoretical uncertainty
CLEO PRL 87:251807, 2001
-not much room for new physics
-Belle (BCP4) measures (2.25 GeV cutoff): $\left(3.37 \pm 0.53 \pm 0.42_{-0.54}^{+0.50}\right) \times 10^{-4}$

$b \rightarrow s \gamma$ photon spectrum

- At quark level, spectrum is a sharp line
- broadened by b quark Fermi motion
- broadened by varying recoil mass (glue)
- smeared by B boost (known)
- smeared by resolution (small)
- Fit to theory spectra propogated through MC:
- Ali-Greub model
- Kagan-Neubert theory
- Moments of the distribution

$$
\begin{gathered}
\left\langle E_{\gamma}\right\rangle=2.346 \pm 0.032 \pm 0.011 \mathrm{GeV} \\
\left\langle E_{\gamma}^{2}\right\rangle-\left\langle E_{\gamma}\right\rangle^{2}=0.0226 \pm 0.0066 \pm 0.0020 \mathrm{GeV}^{2}
\end{gathered}
$$

Subtract BB bkgd:

$\left\langle E_{\gamma}\right\rangle \sim \mathrm{m}_{\mathrm{b}} / 2$ effectively measures HQET parameter
$\Lambda \sim\left(m_{B}-m_{b}\right) \sim$ energy of light degrees of freedom in meson

Search for $\mathrm{B} \rightarrow \mathrm{K}^{(*)} \ell^{+} \ell^{-}$

- Rare penguin FCNC
$\left(\mathbf{V}_{\mathrm{ts}} * \mathbf{V}_{\mathrm{tb}}\right.$, like $\left.b \rightarrow s \gamma\right)$
- SM BR ~ $\mathbf{1 0}^{-6}-\mathbf{1 0}^{-\mathbf{7}}$
- Probes more operators in OPE expansion ($\mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{10}$)
- More sensitive to SUSY, other beyond-SM contributions
- Must suppress $\mathbf{K}^{(*)} \Psi^{\left({ }^{(}\right)}$, continuum, BB semileptonic
$\mathbf{B R}\left(\mathbf{K} \ell^{+} \ell^{-}\right)<1.7 \times 10^{-6} \quad$ (3 events)
$\mathbf{B R}\left(\mathbf{K}^{*} \ell^{+} \ell^{-}\right)<3.3 \times 10^{-6}$ (4 events)
(both at $90 \% \mathrm{CL}$)
Within 50% of SM predictions
CLEO PRL 87:181803, 2001

Alan Weinstein, Caltech, at La Thuile, March 2002

Extracting V_{cb} from inclusive semileptonic decay rate

- Semileptonic decay of a meson containing a heavy quark can be rigorously (in QCD) related to free quark decay (the spectator model) by HQET+OPE, a controlled expansion in α_{s} and $1 / \mathbf{M}_{\mathrm{B}}$. (Falk, Ligeti, Luke, Wise, Savage, Manohar, Bauer, Bigi). Schematically:
$\Gamma\left(B \rightarrow X_{c} \ell \nu\right) \propto\left|V_{c b}\right|^{2} \frac{G_{F}^{2} M_{B}^{5}}{192 \pi^{3}}\left[1+f_{1}\left(\frac{\bar{\Lambda}, \bar{\Lambda} \alpha_{s}}{M_{B}}\right)+f_{2}\left(\frac{\left(\lambda_{1}, \lambda_{2}, \bar{\Lambda}^{2}\right)}{M_{B}^{2}}\right)+O\left(\frac{1}{M_{B}^{3}}\right)\right]+$ rad cor \ldots
$>\bar{\Lambda} \sim\left(M_{B}-M_{b}\right) \sim$ energy of light degrees of freedom in meson
$>\lambda_{1}$ ~average kinetic energy of b quark in B meson
$>\lambda_{2} \approx 0.12 \sim$ hyperfine interaction $M\left(B^{*}\right)-M(B)$
- Measure inclusive rate $\Gamma\left(\mathbf{B} \rightarrow X_{c} \ell v\right)=\mathbf{B R} / \tau_{\mathrm{B}}$
$-\quad \mathbf{B R}\left(\mathbf{B} \rightarrow X_{\boldsymbol{c}} \ell v\right)=(10.39 \pm 0.46) \%$
(CLEO 1996)
- Lifetime $\tau\left(\mathrm{B}^{ \pm}\right)=(1.653 \pm 0.028) \mathbf{p s} ; \tau\left(\mathrm{B}^{0}\right)=(1.548 \pm 0.032) \mathbf{p s} \quad$ (PDG2000)
- Ratio on Y(4S): $\mathbf{f}_{+-} / \mathbf{f}_{00}=\mathbf{1 . 0 4} \pm \mathbf{0 . 0 8}$
(CLEO 2001)
- Measure $\left\langle\mathrm{E}_{\gamma}\right\rangle$ in $b \rightarrow s \gamma$, use theory to extract $\bar{\Lambda}$
- Measure moments of $\mathbf{M}\left(X_{c}\right)$ distribution, use theory to extract λ_{1}
- From the above formula, extract $\left|V_{c b}\right|$
- Estimate errors due to neglected $1 / M_{B}{ }^{3}$ terms, scale of α_{S}, etc.
- All of this relies on assumption of quark-hadron duality

$B \rightarrow X_{c} \ell \nu$ Hadronic Mass Moments

Want $B \rightarrow X_{c} l v$ hadronic mass distribution

- Identify lepton (1.5 GeV $<\mathrm{P}<2.5 \mathrm{GeV}$)
- Hermiticity: p_{v}
- Calculate hadronic recoil mass from ℓv
$M_{X}^{2}=M_{B}^{2}+M_{\ell v}^{2}-2\left(E_{B} E_{\ell v}-P_{B} P_{\ell v} \cos \theta_{B-\ell v}\right)$
- Drop $\cos \theta_{B-\varepsilon v}$ because P_{B} is small

$$
\tilde{M}_{X}^{2}=M_{B}^{2}+M_{\ell v}^{2}-2 E_{B} E_{\ell v}
$$

- Fit spectrum with
- $B \rightarrow D l v$
- $B \rightarrow D^{*} l v$

Observed recoil mass: ON-OFF

$$
\begin{aligned}
& \left\langle M_{x}^{2}-\bar{M}_{D}^{2}\right\rangle=0.251 \pm 0.023 \pm 0.062 \mathrm{GeV}^{2} \\
& \left\langle\left(M_{x}^{2}-\bar{M}_{D}^{2}\right)^{2}\right\rangle=0.639 \pm 0.056 \pm 0.178 \mathrm{GeV}^{4}
\end{aligned}
$$

\bar{M}_{D} is spin averaged $\mathrm{D}, \mathrm{D}^{*}$ mass

$\bar{\Lambda}$ and λ_{1}

Extraction of $\left|\mathrm{V}_{\mathrm{cb}}\right|$

Measured $\Gamma_{\text {sl }}$

$$
\begin{gathered}
\mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)=(10.39 \pm 0.46) \% \text { [CLEO] } \\
\tau_{B^{+}}=(1.653 \pm 0.028) \times 10^{-12} \mathrm{sec} \quad[\mathrm{PDG}] \\
\tau_{B^{0}}=(1.548 \pm 0.032) \times 10^{-12} \mathrm{sec} \quad[\mathrm{PDG}] \\
f_{+-} / f_{00}=1.04 \pm 0.08[\text { [CLEO] } \\
\Gamma_{s \ell}=(0.427 \pm 0.020) \times 10^{-10} \mathrm{MeV}
\end{gathered}
$$

- A 3.2% measurement!
- Inclusive assumes quark - hadron duality.
- Moments can validate inclusive method.
- Inclusive \& exclusive methods both needed.
- Agreement: confidence in V_{cb} determination, and good test of quark - hadron duality.

Combine with Λ and $\lambda_{1:}$

$$
\left|V_{c b}\right|=(40.4 \pm 1.3) \times 10^{-3}
$$

(3.2\% error !)

CLEO, PRL 87:251808, 2001

$$
\begin{aligned}
& \left|V_{c b}\right|=(40.4 \pm 0.9 \pm 0.5 \pm 0.8) \times 10^{-3} \\
& \begin{array}{lcc}
\stackrel{\uparrow}{4} & \uparrow & \uparrow \\
\Gamma_{s l} & \bar{\Lambda}, \lambda_{1} & 1 / M_{B}^{3}, \alpha_{S}
\end{array}
\end{aligned}
$$

From $\left|\mathrm{V}_{\mathrm{cb}}\right|$ to $\left|\mathrm{V}_{\mathrm{ub}}\right|$

- Why not another expansion in $\Lambda, \lambda_{1}, \lambda_{2}$?
- Very large $\mathrm{b} \rightarrow \mathrm{c}$ backgrounds!
- Only isolate $\mathrm{b} \rightarrow \mathrm{u} \ell \nu$ in corner of phase space (here, endpoint of lepton momentum)
- Expansion is no longer in $1 / \mathrm{M}_{\mathrm{B}}$:
- This is a heavy \rightarrow light transition
- Expansion in: $1 /(1-x) \mathrm{M}_{\mathrm{B}}, \quad \mathrm{x}=2 \mathrm{p}_{\ell} / \mathrm{M}_{\mathrm{B}}$
- Very sensitive to smearing of spectrum at endpoint!

- Can relate to another heavy \rightarrow light transition: $\mathrm{b} \rightarrow \mathrm{s} \gamma$ (Neubert; Liebovich, Low, and Rothstein)
- Both are smeared by a common non-perturbative $\mathrm{b} \rightarrow \mathrm{al} V$ light-cone shape function
- Extract shape function from $\mathrm{b} \rightarrow \mathrm{s} \gamma$
- Use to predict fraction of $b \rightarrow u \ell v$ rate above experimental lepton momentum cut (and try to make this cut as low as possible!)

The $\mathrm{b} \rightarrow \mathrm{u} \ell \mathrm{v}$ endpoint

- Use $9.13 \mathrm{fb}^{-1}(\mathrm{ON}), 4.35 \mathrm{fb}^{-1}$ (OFF)
- $2.2<\mathrm{p}_{\ell}<2.6 \mathrm{GeV} / \mathrm{c}$ (VARY)
- Neural-net continuum subtraction
- Subtract remaining continuum using off-res data
- Shape of $b \rightarrow c \ell v$ and other B bknds estimated using detailed MC simulation (including PHOTOS for radiation), and subtracted
- Syst error dominated by model uncertainty in B backgrounds

$\mathrm{N}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \ell \nu\right)$ events $=1901 \pm 122 \pm 256$
Partial branching ratio:
$\Delta \mathrm{BR}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \ell \mathrm{v}\right)(2.2-2.6 \mathrm{GeV})=(2.30 \pm 0.15 \pm 0.35) \times 10^{-4}$

Extracting $\left|\mathrm{V}_{\mathrm{ub}}\right|$ from inclusive spectrum

- From Hoang, Ligeti and Manohar (1999) ("Upsilon Expansion"):
- $\left.\left|\mathrm{V}_{\mathrm{ub}}\right|=\left[(3.06 \pm 0.08 \pm 0.08) \times 10^{-3}\right] \times\left[\left(\mathrm{B}_{\mathrm{ub}} / 0.001\right) \cdot(1.6 \mathrm{ps}) / \tau_{\mathrm{B}}\right)\right]^{1 / 2}$
- Need $B_{u b} \equiv B R\left(B \rightarrow X_{u} \ell v\right)$ from $\Delta B R\left(B \rightarrow X_{u} \ell v\right)$
- Determine fraction of B_{ub} in lepton momentum endpoint using $\mathrm{b} \rightarrow \mathrm{s} \gamma$
- Fit light-cone shape function (Kagan-Neubert; 2 parameterizations)
- Convolute with parton-level $\mathrm{b} \rightarrow \mathrm{u} \ell v$ rate
- determine fraction $f_{u}(p)$ for different windows
$-f_{u}(p)=0.130 \pm 0.024 \pm 0.015$ for $2.2<\mathrm{p}_{\ell}<2.6 \mathrm{GeV} / \mathrm{c}$
- Vary the momentum window: consistent results.
- $\Rightarrow \mathrm{BR}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \ell \mathrm{v}\right)=(1.77 \pm 0.29 \pm 0.38) \times 10^{-3}$
- $\Rightarrow\left|\mathrm{V}_{\mathrm{ub}}\right|=(4.08 \pm 0.34 \pm 0.44 \pm 0.16 \pm 0.24) \times 10^{-3}$
- Errors: $\quad \Delta \mathrm{BR} \quad f_{u}(p) \quad \mathrm{B}_{\mathrm{ub}} \rightarrow\left|\mathrm{V}_{\mathrm{ub}}\right|$ shape fcn
- Result assumes quark-hadron duality.

Determination of V_{cb} from Exclusive $B \rightarrow D^{*} \ell+v$

- The differential decay rate in $q^{2}=m^{2}(\ell+\mathrm{V})$, or better, the HQET variable $w=v_{B} \bullet v_{D^{*}}=\left(m_{B}^{2}+m_{D^{*}}{ }^{-}-q^{2}\right) /\left(2 m_{B} m_{D^{*}}\right)$, is

$\boldsymbol{d} \Gamma / \boldsymbol{d} \boldsymbol{w}\left(B \rightarrow \boldsymbol{D}^{*} \ell+\mathrm{V}\right)=\left(\boldsymbol{G}_{\boldsymbol{F}}{ }_{\boldsymbol{F}} / 48 \pi^{2}\right)\left|V_{c b}\right|^{2} \mid \boldsymbol{F}_{\boldsymbol{D}^{*}(w)}\left(\left.\right|^{2} P S(w)\right.$

- $\boldsymbol{P S}(\boldsymbol{w})$ contains kinematic factors and is known
- $\boldsymbol{F}_{D^{*}}(\boldsymbol{w})$ is the form-factor describing the $\mathrm{B} \rightarrow \mathrm{D}^{*}$ transition
- There's actually 3 form-factors, but their ratios are measured by CLEO and others, and they boil down to one in w (Isgur-Wise function).
- HQS normalizes at zero recoil $\left(\boldsymbol{q}^{2}{ }_{\text {max }}, w=1\right)$: as $\mathrm{m}_{\mathrm{Q}} \rightarrow \infty, \boldsymbol{F}_{D^{*}}(w) \rightarrow \boldsymbol{1}$

- Use HQET to estimate $\boldsymbol{F}_{D *}(\boldsymbol{w}=\boldsymbol{1})=0.913 \pm 0.042$
- QCD dispersion relations contsrain the shape of $F_{D^{*}}(\boldsymbol{w})$, in terms of one parameter:
ρ^{2}, the slope at $w=1$.

Isolating $\mathrm{B} \rightarrow \mathbf{D}^{*} \ell{ }^{+} \mathrm{v}$

- $\mathrm{B} \rightarrow \mathbf{D}^{*-} \ell+{ }^{+}$Osaka (2000), now also
- $\mathrm{B} \rightarrow \mathbf{D}^{* 0} \ell+\mathrm{V}$ Rome (2001)
- Use $3.1 \mathrm{fb}^{-1}$ (ON), $1.6 \mathrm{fb}^{-1}$ (OFF) systematics limited; use best-studied $\sim 1 / 3$ of CLEO data
- Electrons: $0.8<\mathrm{p}_{\mathrm{e}}<2.4 \mathrm{GeV} / \mathrm{c}$
- Muons: $1.4<\mathrm{p}_{\mu}<2.4 \mathrm{GeV} / \mathrm{c}$
- Discriminate signal from backgrounds:
- Angle between B and D* ℓ
- If more than one v missing, can have $\left|\cos \theta_{\mathrm{B}-\mathrm{D} * \ell}\right|>1$
- Analysis requires rate vs q^{2} or w
- Fit $\cos \theta_{\mathrm{B}-\mathrm{D}^{*} \ell}$ distribution to signal+backgrounds in bins of w

Signal and Bkgnd for $1.10<\boldsymbol{w}<\mathbf{1 . 1 5}$

$\mathrm{d} \Gamma / \mathrm{d} w\left(\mathrm{~B} \rightarrow \mathrm{D}^{*} \ell{ }^{+} \mathrm{v}\right)$

- Extract signal in bins of w
- Rate for $\mathbf{B} \rightarrow \mathbf{D} \ell{ }^{+} v$ near $w=1$ is zero; for $\mathrm{B} \rightarrow \mathbf{D}^{*} \ell^{+} \mathrm{V}$ it is finite.
- Better D^{*} signal and efficiency for D^{*+}; better acceptance at $w=1$ for D^{*}
- Integrating over w :
- $\mathbf{B R}\left(\mathbf{D}^{*-} \ell+\vee\right)=(\mathbf{6 . 0 9} \pm 0.19 \pm 0.40) \%$
$\mathbf{B R}\left(\mathbf{D}^{* 0} \ell{ }^{+} v\right)=(6.50 \pm 0.20 \pm 0.44) \%$
$\Gamma\left(\mathbf{D}^{*} \ell{ }^{+} \mathrm{V}\right)=(\mathbf{3 9 . 4} \pm 1.2 \pm 2.6) \mathbf{f s}^{\mathbf{- 1}}$
- Systematics:
- Efficiency (slow pions)
- D*, D branching fractions

- Backgrounds
- Form factors

Fit for \mathbf{V}_{cb} from $\mathbf{B} \rightarrow \mathbf{D}^{*} \ell{ }^{+} \mathbf{V}$

$$
\begin{aligned}
& \text { CLEO }
\end{aligned}
$$

- Dominant sys errors: ε_{π} slow, form factors, $\mathrm{B}(\mathrm{D} \rightarrow \mathrm{K} \pi)$
- Single most precise excl. V_{cb}

\mathbf{V}_{cb} from $\mathbf{B} \rightarrow \mathbf{D}^{*} \ell^{+} \mathrm{V}$

- Comparison with other recent exclusive measurements:

- CLEO includes $\mathrm{D}^{* 0}$
- CLEO fits for $\mathrm{D}^{*} \mathrm{X} \ell^{+} v$ component; LEP uses models
- CLEO uses $F(1)=0.913$; LEP WG uses 0.88
Alan Weinstein, Caltech, at La Thuile, March 2002

\mathbf{V}_{ub} from Exclusive Reconstruction of

B $\rightarrow(\pi / \rho / \omega) \ell^{+} \vee$

- CLEO 1996 measured BRs for $B \rightarrow \pi \ell^{+} v$ and $(\rho / \omega) \ell^{+} v$, reconstructing v from missing E-p
- $\mathbf{B R}\left(\pi \ell{ }^{+} \downarrow\right)=(\mathbf{1 . 8} \pm 0.4 \pm 0.4) \times 10^{-4}$ $\mathbf{B R}(\rho / \omega \ell+\nu)=(\mathbf{2 . 5} \pm 0.4 \pm 0.8) \times 10^{-4}$
- $\left|\mathbf{V}_{\mathbf{u b}}\right|=(\mathbf{3 . 2 5} \pm \mathbf{0 . 3 0} \pm \mathbf{0 . 5 5}) \times 10^{-3}$

More CKM measurements to come

- $B \rightarrow X_{c} \ell \nu$ inclusive lepton spectrum moments ($\left\langle E_{\ell}\right\rangle$)
- Another band in $\Lambda-\lambda_{1}$ plane
- low-background tagged (di-leptons) and high-stat untagged
- $B \rightarrow X \ell v$ inclusive ℓv distribution (neutrino reconstruction)
- Simultaneously measure components of $b \rightarrow c \ell \nu$ and $b \rightarrow u \ell \nu$ in full 3-D kinematic space $\left(E_{\ell}, E_{v}, q^{2}\right)$
- Extract Λ / λ_{1}, from moments of $b \rightarrow c \ell \nu$ and V_{ub} from $b \rightarrow u \ell v$

Summary of Recent CLEO Results

- New measurement of $\mathrm{B}(b \rightarrow s \gamma)$ and $\left\langle\mathrm{E}_{\gamma}\right\rangle \rightarrow \bar{\Lambda}\left(\mathrm{m}_{\mathrm{b}}\right)$

$$
\mathbf{B}(\boldsymbol{b} \rightarrow \boldsymbol{s} \gamma)=(3.21 \pm 0.43 \pm 0.32) \times 10^{-4}
$$

- New limits on $\mathrm{B} \rightarrow \mathrm{K}^{(*)} \ell^{+} \ell^{-}$:

$$
\mathbf{B}\left(\mathbf{K} \ell^{+} \ell^{-}\right)<\mathbf{1 . 7} \times 10^{-6}, \quad \mathbf{B}\left(\mathbf{K}^{*} \ell^{+} \ell^{-}\right)<\mathbf{3 . 3} \times 10^{-6}
$$

- New V_{cb} from moments analysis of $\mathrm{b} \rightarrow \mathrm{s} \gamma$ \& $\mathrm{B} \rightarrow \mathrm{Xlv}$

$$
\left|V_{c b}\right|=(40.4 \pm 1.3) \times 10^{-3}
$$

- New V_{ub} from endpoint of lepton spectrum, where fraction of rate in endpoint constrained by analysis of $\mathrm{b} \rightarrow \mathrm{s} \gamma$ spectrum.

$$
\left|V_{u b}\right|=(4.08 \pm 0.63) \times 10^{-3}
$$

- New V_{cb} from $\mathrm{B} \rightarrow \mathrm{D}^{*} \mathrm{l} v$

$$
\left|V_{c b}\right|=(46.4 \pm 1.4 \pm 2.4 \pm 2.1) \times 10^{-3}
$$

More results

- New measurement of V_{ub} from exclusive $\mathbf{B} \rightarrow \pi \ell^{+} \mathrm{v}$ and $(\rho / \omega) \ell^{+} v$ coming soon. Also more inclusive $\mathrm{V}_{\mathrm{cb}}, \mathrm{V}_{\mathrm{ub}}$.
- Color-suppressed decays, first observation (hep-ex/0110055 \rightarrow PRL):

$$
\begin{aligned}
& \mathcal{B}\left(\overline{\mathrm{B}}^{0} \rightarrow \mathrm{D}^{0} \pi^{0}\right)=\left(2.74_{-0.32}^{+0.36} \pm 0.55\right) \times 10^{-4} \\
& \mathcal{B}\left(\overline{\mathrm{~B}}^{0} \rightarrow \mathrm{D}^{* 0} \pi^{0}\right)=\left(2.20_{-0.52}^{+0.59} \pm 0.79\right) \times 10^{-4}
\end{aligned}
$$

- First observation of $\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{*}$ (hep-ex/0112033 \rightarrow PRL):

$$
\begin{aligned}
& \mathcal{B}\left(B^{-} \rightarrow D^{0} K^{*-}\right)=(6.1 \pm 1.6 \pm 1.7) \times 10^{-4}, \\
& \mathcal{B}\left(\bar{B}^{\natural} \rightarrow D^{+} K^{*-}\right)=(3.7 \pm 1.5 \pm 1.0) \times 10^{-4}, \\
& \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} K^{*-}\right)=(3.8 \pm 1.3 \pm 0.8) \times 10^{-4}, \\
& \mathcal{B}\left(B^{-} \rightarrow D^{* 0} K^{*-}\right)=(7.7 \pm 2.2 \pm 2.6) \times 10^{-4} .
\end{aligned}
$$

useful for measuring CKM angle γ

- Many rare B decays observed by CLEO-III. Branching ratios in good agreement with theory. No CPV observed in rates.

